Stability of layered cylindrical shells filled with fluid
- Authors: Bochkarev S.A.1
-
Affiliations:
- Institute of Continuous Media Mechanics, Ural Branch Russian Academy of Sciences
- Issue: Vol 29, No 1 (2025)
- Pages: 55-76
- Section: Mechanics of Solids
- URL: https://journals.rcsi.science/1991-8615/article/view/311034
- DOI: https://doi.org/10.14498/vsgtu2117
- EDN: https://elibrary.ru/SEUHGG
- ID: 311034
Cite item
Full Text
Abstract
The paper investigates the stability of circular vertical layered cylindrical shells completely filled with a quiescent compressible fluid subjected to hydrostatic and external static loads. The behavior of the elastic structure and the fluid medium is described within the framework of the classical shell theory and Euler equations. The linearized equations of motion of the shell and the corresponding geometrical and physical relations are reduced to a system of ordinary differential equations with respect to new unknowns. The acoustic wave equation is transformed to a system of differential equations using the method of generalized differential quadrature. The solution of the formulated boundary value problem is reduced to the calculation of natural vibration frequency in terms of Godunov's orthogonal sweep method. For this purpose, a stepwise procedure is applied in combination with a subsequent refinement by the Muller method. The reliability of the obtained results is verified through a comparison with known numerical solutions. The dependence of the critical external pressure on the ply angle of simply supported, rigidly fixed and cantilevered two-layer and three-layer cylindrical shells is analyzed in detail. The influence of the combined static pressure on the optimal ply angle providing an increase of the stability boundary is evaluated.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey A. Bochkarev
Institute of Continuous Media Mechanics, Ural Branch Russian Academy of Sciences
Author for correspondence.
Email: bochkarev@icmm.ru
ORCID iD: 0000-0002-9722-1269
https://www.mathnet.ru/person31691
Cand. Phys. & Math. Sci.; Senior Researcher; Lab. of Functional Materials Mechanics
Russian Federation, 614068, Perm, Acad. Korolev st., 1References
- Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells]. Moscow, Fizmatlit, 2014, 408 pp. (In Russian). EDN: UGLCQJ.
- Stability and Vibrations of Thin-Walled Composite Structures, ed. H. Abramovich. Haifa, Woodhead Publ., 2017, xi+757 pp.
- Bochkarev S. A., Lekomtsev S. V. Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells, Struct. Eng. Mech., 2022, vol. 81, no. 6, pp. 769–780. EDN: KDSYKY. DOI: https://doi.org/10.12989/sem.2022.81.6.769.
- Bochkarev S. A. Study of natural vibrations of fluid-containing composite cylindrical shells resting on elastic foundation, Mechanics of Composite Materials and Structures, 2023, vol. 29, pp. 149–166 (In Russian). EDN: BFJANF. DOI: https://doi.org/10.33113/mkmk.ras.2023.29.02.01.
- Zhang Y. L., Gorman D. G., Reese J. M. A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid, J. Sound Vibration, 2001, vol. 245, no. 1, pp. 93–112. DOI: https://doi.org/10.1006/jsvi.2000.3554.
- Zhang Y. L., Reese J. M., Gorman D. G. Initially tensioned orthotropic cylindrical shells conveying fluid: A vibration analysis, J. Fluids Struct., 2002, vol. 16, no. 1, pp. 53–70. DOI: https://doi.org/10.1006/jfls.2001.0409.
- Zhang Y. L., Gorman D. G., Reese J. M. Vibration of prestressed thin cylindrical shells conveying fluid, Thin-Walled Struct., 2003, vol. 41, no. 12, pp. 1103–1127. DOI: https://doi.org/10.1016/S0263-8231(03)00108-3.
- Kadoli R., Ganesan N. Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid, Compos. Struct., 2003, vol. 60, no. 1, pp. 19–32. DOI: https://doi.org/10.1016/S0263-8223(02)00313-6.
- Bochkarev S.A., Matveenko V.P. Numerical modelling of the stability of loaded shells of revolution containing fluid flows, J. Appl. Mech. Techn. Phys., 2008, vol. 49, no. 2, pp. 313–322. EDN: LLAQVZ. DOI: https://doi.org/10.1007/s10808-008-0043-1.
- Sheng G. G., Wang X. Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads, Compos. Struct., 2010, vol. 93, no. 1, pp. 162–170. DOI: https://doi.org/10.1016/j.compstruct.2010.06.004.
- Zhu X., Ye W. B., Lin T. Y., Chen C. The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method, Ocean Eng., 2013, vol. 58, pp. 22–26. DOI: https://doi.org/10.1016/j.oceaneng.2012.09.008.
- Li T. Y., Xiong L., Zhu X., et al. The prediction of the elastic critical load of submerged elliptical cylindrical shell based on the vibro-acoustic model, Thin-Walled Struct., 2014, vol. 84, pp. 255–262. DOI: https://doi.org/10.1016/j.tws.2014.06.013.
- Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Natural vibrations of loaded noncircular cylindrical shells containing a quiescent fluid, Thin-Walled Struct., 2015, vol. 90, pp. 12–22. EDN: UENHRN. DOI: https://doi.org/10.1016/j.tws.2015.01.001.
- Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Hydrothermoelastic stability of functionally graded circular cylindrical shells containing a fluid, Mech. Compos. Mater., 2016, vol. 52, no. 4, pp. 507–520. EDN: YVHKIT. DOI: https://doi.org/10.1007/s11029-016-9601-4.
- Li R., Liu L., Liang B., Yang M. An efficient method to improve the stability of submerged functionally graded cylindrical shell, J. Mech. Sci. Technol., 2019, vol. 33, pp. 2527–2536. DOI: https://doi.org/10.1007/s12206-019-0502-z.
- Liu X. M., Yang M., Li R., Liang B. Research on prediction of critical pressure of FGM cylindrical shells under hydrostatic pressure based on homogenization transformation method, AIP Advances, 2023, vol. 13, no. 18, 085306. DOI: https://doi.org/10.1063/5.0157600.
- Krishna R. K., Kochupillai J. A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element, J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, 388. DOI: https://doi.org/10.1007/s40430-020-02477-1.
- Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Natural vibrations of composite cylindrical shells partially filled with fluid, Vestnik St. Petersb. Univ., Math., 2023, vol. 56, no. 4, pp. 435–445. EDN: AEYLPX. DOI: https://doi.org/10.1134/s1063454123040052.
- Wu J. H., Liu R. J., Duan Y., Sun Y. D. Free and forced vibration of fluid-filled laminated cylindrical shell under hydrostatic pressure, Int. J. Pressure Vessels Piping, 2023, vol. 202, 104925. DOI: https://doi.org/10.1016/j.ijpvp.2023.104925.
- Grigoliuk E. I., Shkliarchuk F. N. Equations of perturbed motion of a body with a thinwalled elastic shell partially pilled with a liquid, J. Appl. Math. Mech., 1970, vol. 34, no. 3, pp. 379–389. DOI: https://doi.org/10.1016/0021-8928(70)90084-5.
- Gorshkov A. G., Morozov V. I., Ponomarev V. I., Shklyarchuk F. N. Aerogidrouprugost' konstruktsii [Aerohydroelasticity of Structures]. Moscow, Fizmatlit, 2000, 592 pp. (In Russian)
- Schotté J. S., Ohayon R. Incompressible hydroelastic vibrations: Finite element modelling of the elastogravity operator, Comput. Struct., 2005, vol. 83, no. 2–3, pp. 209–219. DOI: https://doi.org/10.1016/j.compstruc.2004.03.084.
- Grigor'ev V. G., Grigor’eva E. V. Contact interaction of a bounded liquid volume with a solid under the action of gravity forces, Mech. Solids, 2011, vol. 46, no. 2, pp. 280–290. EDN: OHZDXH. DOI: https://doi.org/10.3103/S0025654411020178.
- Schotté J. S., Ohayon R. Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface, J. Sound Vibration, 2013, vol. 332, no. 10, pp. 2396–2414. DOI: https://doi.org/10.1016/j.jsv.2012.07.036.
- Bochkarev S. A., Lekomtsev S. V. Natural vibrations of non-circular cylindrical shells partially filled with fluid with sloshing of free surface, Comput. Continuum Mechanics, 2014, vol. 7, no. 4, pp. 471–480 (In Russian). EDN: RFBIFJ. DOI: https://doi.org/10.7242/1999-6691/2014.7.4.45.
- Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Dynamic analysis of partially filled non-circular cylindrical shells with liquid sloshing, Int. J. Appl. Mech., 2016, vol. 8, no. 3, 1650027. EDN: FBXNAG. DOI: https://doi.org/10.1142/S1758825116500277.
- Ohayon R., Schotté J. S. Modal analysis of liquid-structure interaction, In: Modeling and Simulation in Science, Engineering and Technology; eds. Y. Bazilevs, K. Takizawa. Cham, Birkhäuser, 2016, pp. 423–438. DOI: https://doi.org/10.1007/978-3-319-40827-9_33.
- Bochkarev S. A., Lekomtsev S. V., Senin A. N. Natural vibrations and stability of loaded cylindrical shells partially filled with fluid, taking into account gravitational effects, Thin-Walled Struct., 2021, vol. 164, 107867. EDN: FYCGJP. DOI: https://doi.org/10.1016/j.tws.2021.107867.
- Hoareau C., Deü J. F., Ohayon R. Hydroelastic linearized vibrations taking into account prestressed effects due to internal liquid weight: Numerical vs. experimental results, J. Fluids Struct., 2022, vol. 112, 103596. DOI: https://doi.org/10.1016/j.jfluidstructs.2022.103596.
- Hoareau C., Deü J. F., Ohayon R. Construction of reduced order operators for hydroelastic vibrations of prestressed liquid–structure systems using separated parameters decomposition, Comput. Meth. Appl. Mech. Eng., 2022, vol. 402, 115406. DOI: https://doi.org/10.1016/j.cma.2022.115406.
- Amabili M., Païdoussis M. P., Lakis A. A. Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom, J. Sound Vibration, 1998, vol. 213, no. 2, pp. 259–299. DOI: https://doi.org/10.1006/jsvi.1997.1481.
- Godunov S. K. Ordinary Differential Equations with Constant Coefficients, Translations of Mathematical Monographs, vol. 169. Providence, American Mathematical Society, 1997, ix 282 pp. DOI: https://doi.org/10.1090/mmono/169.
- Yudin A. S., Ambalova N. M. Forced vibrations of coaxial reinforced cylindrical shells during interaction with a fluid, Soviet Appl. Mech., 1989, vol. 25, no. 12, pp. 1222–1227. DOI: https://doi.org/10.1007/BF00887148.
- Yudin A. S., Safronenko V. G. Vibroakustika strukturno-neodnorodnykh obolochek [Vibroacoustics of Structurally Inhomogeneous Shells]. Rostov-on-Don, Southern Federal Univ., 2013, 424 pp. (In Russian)
- Bochkarev S. A. Natural Vibrations of a Cylindrical Shell with Fluid Partly Resting on a Two-Parameter Elastic Foundation, International Journal of Structural Stability and Dynamics, 2022, vol. 22, pp. 2250071. DOI: https://doi.org/10.1142/S0219455422500717.
- Bochkarev S. A. Numerical simulation of natural vibrations of a cylindrical shell partially filled with fluid and embedded in an elastic foundation, Comput. Technol., 2022, vol. 27, no. 4, pp. 15–32 (In Russian). EDN: DDEGTR. DOI: https://doi.org/10.25743/ICT.2022.27.4.003.
- Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Natural vibrations of truncated conical shells containing fluid, Mech. Solids, 2022, vol. 57, no. 8, pp. 1971–1986. EDN: ZAHSPL. DOI: https://doi.org/10.3103/S0025654422080064.
- Shu C. Differential Quadrature and Its Application in Engineering. London, Springer, 2000, xvi+340 pp. DOI: https://doi.org/10.1007/978-1-4471-0407-0.
- Karmishin A. V., Lyaskovets V. A., Myachenkov V. I., Frolov A. N. Statika i dinamika tonkostennykh obolochechnykh konstruktsii [Statics and Dynamics of Thin-Walled Shell Structures]. Moscow, Mashinostroenie, 1975, 376 pp. (In Russian)
- Alfutov N. A., Zinov'ev P. A., Popov B. G. Raschet mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of Multilayer Plates and Shells of Composite Materials]. Moscow, Mashinostroenie, 1984, 264 pp. (In Russian)
- Averbukh A. Z., Veitsman R. I., Genkin M. D. Kolebaniia elementov konstruktsii v zhidkosti [Vibration of Structural Elements in Fluid]. Moscow, Nauka, 1987, 158 pp. (In Russian)
- Bochkarev S. A., Matveenko V. P. Free vibration analysis of a cylindrical shell of variable thickness partially filled with fluid, Proc. Steklov Inst. Math. (Suppl.), 2023, vol. 321, no. S1, pp. S20–S32. EDN: JVKDVU. DOI: https://doi.org/10.1134/S0081543823030045.
- Muller D. E. A method for solving algebraic equations using an automatic computer, Math. Comput., 1956, vol. 10, no. 56, pp. 208–215. DOI: https://doi.org/10.2307/2001916.
- Wu X. Improved Muller method and bisection method with global and asymptotic superlinear convergence of both point and interval for solving nonlinear equations, Appl. Math. Comput., 2005, vol. 166, no. 2, pp. 299–311. DOI: https://doi.org/10.1016/j.amc.2004.04.120.
- Demidovich B. P., Maron I. A., Shuvalova E. Z. Chislennye metody analiza [Numerical Methods of Analysis]. Moscow, Nauka, 1967, 368 pp. (In Russian)
- Sheinman I., Greif S. Dynamic analysis of laminated shells of revolution, J. Compos. Mater., 1984, vol. 18, no. 3, pp. 200–215. DOI: https://doi.org/10.1177/002199838401800301.
- Miserentino R., Volsteen L. F. Vibration Tests of Pressurized Thin-Walled Cylindrical Shells, NASA TN D-3066. Hampton, Va, Langley Research Center, 1965. https://ntrs.nasa.gov/api/citations/19650026237/downloads/19650026237.pdf.
- Narita Y., Ohta Y., Yamada G., Kobayashi Y. Analytical method for vibration of angle-ply cylindrical shells having arbitrary edges, AIAA Journal, 1992, vol. 30, no. 3, pp. 790–796. DOI: https://doi.org/10.2514/3.10986.
- Amabili M. Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface, J. Sound Vibration, 2000, vol. 231, no. 1, pp. 79–97. DOI: https://doi.org/10.1006/jsvi.1999.2678.
Supplementary files
