Numerical method for solving the optimization problem of trajectory control and formation maintenance by a group of autonomous UAVs with predictive models

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the development of a numerical method for solving the optimization problem of trajectory control of a single UAV based on the penalty functions method with computational acceleration. The article described a numerical method for finding a solution to the trajectory control problem, presented as a quadratic programming problem, using the penalty function method with Aitken's computational acceleration.

About the authors

Konstantin Yu. Ganshin

North-Caucasus Federal University

Email: dlvinokursky@gmail.com
ORCID iD: 0000-0001-7495-0736

graduate student, Institute of Information Technologies and Telecommunications

Russian Federation, 355017, Russia, Stavropol, 1, Pushkin street

Dmitry L. Vinokursky

North-Caucasus Federal University

Email: dlvinokursky@gmail.com
ORCID iD: 0000-0002-5225-8076

Ph.D. (Phys. & Math.), Associate Professor, Institute of Information Technologies and Telecommunications

Russian Federation, 355017, Russia, Stavropol, 1, Pushkin street

Oksana S. Mezentseva

North-Caucasus Federal University

Email: dlvinokursky@gmail.com
ORCID iD: 0000-0001-5503-1056

Ph.D. (Phys. & Math.) Associate Professor, Institute of Information Technologies and Telecommunications

Russian Federation, 355017, Russia, Stavropol, 1, Pushkin street

Filipp V. Samoilov

North-Caucasus Federal University

Author for correspondence.
Email: dlvinokursky@gmail.com
ORCID iD: 0000-0003-3555-4479

Ph.D. (Phys. & Math.), Associate Professor, Institute of Information Technologies and Telecommunications

Russian Federation, 355017, Russia, Stavropol, 1, Pushkin street

References

  1. Jezierski A. A comparison of LQR and MPC control algorithms of an inverted pendulum / A. Jezierski, J. Mozaryn, D. Suski. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing. 2017. Pp. 65-76.
  2. Ławryńczuk M. Introduction to model predictive control // in book "Nonlinear Predictive Control Using Wiener Models". Cham: Springer International Publishing. 2022. Pp. 3-40.
  3. Richalet J., Rault A., Testud J. et al. Model predictive heuristic control. Automatica (Oxf.). 1978. No. 14 (5). Pp. 413-428.
  4. Vinogradov A.M., Krasil'shchik I.S. What is the Hamiltonian formalism? Russian mathematical surveys. 1975. Vol. 30. No. 1. Pp. 177-202.
  5. Garcia G.A., Kim A.R., Jackson E. et al. Modeling and flight control of a commercial nano quadrotor // International Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2017. doi: 10.1109/icuas.2017.7991439-2017.
  6. Chinedu Amata Amadi W.S. Design and implementation of Model Predictive Control on Pixhawk Flight Controller. Stellenbosch University. 2018.
  7. Giernacki W., Skwierczynski M., Witwicki W. et al. Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE. 2017. doi: 10.1109/mmar.2017.8046794-2017.
  8. Arnold V.I., Kozlov V.V., Nejshtadt A.I. Mathematical aspects of classical and celestial mechanics. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya. 1985. No. 3. Pp. 5-290. (in Russian)
  9. Wills A.G., Heath W.P. Barrier function based model predictive control. Automatica: the journal of IFAC, the International Federation of Automatic Control. 2004. No. 8(40). Pp. 1415-1422.
  10. Gopal V., Biegler L.T. Large scale inequality constrained optimization and control. IEEE Control Systems Magazine. 1998. No. 18(6). Pp. 59-68.
  11. Faddeev D.K., Faddeeva V.N. Vychislitel'nyye metody lineynoy algebry [Computational methods of linear algebra]. Leningrad: Nauka, 1975 (in Russian)
  12. Aitken A.C. XXV. - On Bernoulli's numerical solution of algebraic equations. Proceedings of the Royal Society of Edinburgh. 1927. (46). Pp. 289-305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Ganshin K.Y., Vinokursky D.L., Mezentseva O.S., Samoilov F.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).