Application of machine learning methods in assessing the activities of an educational organization of a higher school

Cover Page

Cite item

Full Text

Abstract

This article solves the problem of developing a program code for evaluating the activities of educational institutions of higher education on the basis of a set of indicators. The indicators of previous university assessments and their final results are used as input data. Machine learning with a teacher based on a multiple linear regression algorithm is used to successfully solve the problem, which allows us to identify patterns for an adequate assessment. These patterns are revealed on the basis of data accumulated during the activities of universities, and the experience existing in educational practice in assessing universities. As a result, the developed program code based on the available data gives an assessment of the university with a certain accuracy.

About the authors

Asiyat Mukhtarovna Bozieva

Scientific and Educational Center of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: bozieva.asya@mail.ru
ORCID iD: 0000-0002-1124-2289

postgraduate student

Russian Federation, 360010, Russia, Nalchik, 2 Balkarov street

Fatimat Mukhamedovna Tseeva

Institute of Informatics, Electronics and Robotics of KBSU

Email: mfmkbsu@mail.ru
ORCID iD: 0000-0001-7203-3571

Associate Professor of the Department of Mechatronics and Robotics

Russian Federation, 360004, Russia, Nalchik, 173 Chernyshevsky street

Dana Vladimirovna Khatukhova

Institute of Informatics, Electronics and Robotics of KBSU

Author for correspondence.
Email: dkhatukhova@list.ru
ORCID iD: 0009-0009-0190-8823

Senior Lecturer of the Department of Information Technologies in  the Management  of  Technical  Systems

Russian Federation, 360004, Russia, Nalchik, 173 Chernyshevsky street

References

  1. Bozieva A.M., Dzamikhova F.Kh. A model of an intelligent system based on fuzzy logic in the tasks of evaluating the activities of a higher educational institution. News of the Kabardino-Balkarian Scientific Center of RAS. 2023. No. 1(111). Pp. 11-17. doi: 10.35330/1991-6639-2023-1-111-11-17. EDN: VGNLBT (In Russian)
  2. Kotlyarova I.O. Artificial intelligence technologies in education. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Obrazovanie. Pedagogicheskie nauki [Bulletin of the South Ural State University. Series: Education. Pedagogical Sciences]. 2022. Vol. 14. No 3. Pp. 69-82. EDN: JADHNV (In Russian)
  3. Poletaeva N.G. Classification of machine learning systems. Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta. Seriya: Fiziko-matematicheskie i tekhnicheskie nauki [Bulletin of the Baltic Federal University n.a I. Kant. Series: Physical, mathematical and technical sciences]. 2020. No 1. Pp. 5-22. EDN: RCHVEU (In Russian)
  4. Shai Sh.-Sh., Shai B.-D. Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press, 2014. 410 p.
  5. Brink H., Joseph W. Richards, Fetherolf M. Real-World Machine Learning. New-York: Manning Publications. 2014. 264 p.
  6. V'yugin V.V. Matematicheskie osnovy mashinnogo obucheniya i prognozirovaniya [Mathematical Foundations of Machine Learning and Prediction]. Moscow: MTsNMO, 2022. 400 p. (In Russian)
  7. Gelman A., Hill J., Vehtari A. Regression and Other Stories (Analytical Methods for Social Research). Cambridge: Cambridge University Press, 2020. 548 p.
  8. Saati T. Prinyatie resheniy: metod analiza ierarkhiy [Decision Making: Hierarchy Analysis Method]. Transl. from Eng. R. G. Vachnadze. Moscow: Radio i svyaz', 1993. 278 p.
  9. Voronov M.V., Pimenov V.I., Nebaev I.A. Sistemy iskusstvennogo intellekta: uchebnik i praktikum dlya vuzov [Artificial intelligence systems: Tutorial and practices for High School]. Moscow: Yurayt, 2022. 256 p. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Bozieva A.M., Tseeva F.M., Khatukhova D. .

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).