The Number of k-Sumsets in an Abelian Group


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.

Sobre autores

A. Sapozhenko

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: sapozhenko@mail.ru
Rússia, Leninskie gory 1, Moscow, 119991

V. Sargsyan

Lomonosov Moscow State University

Email: sapozhenko@mail.ru
Rússia, Leninskie gory 1, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018