The Number of k-Sumsets in an Abelian Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.

作者简介

A. Sapozhenko

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: sapozhenko@mail.ru
俄罗斯联邦, Leninskie gory 1, Moscow, 119991

V. Sargsyan

Lomonosov Moscow State University

Email: sapozhenko@mail.ru
俄罗斯联邦, Leninskie gory 1, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018