On the asymptotic optimality of orthoregressional estimators
- 作者: Lomov A.A.1,2
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 10, 编号 4 (2016)
- 页面: 511-519
- 栏目: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212513
- DOI: https://doi.org/10.1134/S1990478916040074
- ID: 212513
如何引用文章
详细
It is shown that the orthoregressional (STLS) parameter estimators in linear algebraic systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimators and thus become asymptotically best in the limit case of large variances of the random coordinates on the variety of solutions to the system observed with additive random perturbations.
作者简介
A. Lomov
Sobolev Institute of Mathematics; Novosibirsk State University
编辑信件的主要联系方式.
Email: lomov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
补充文件
