On the asymptotic optimality of orthoregressional estimators


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that the orthoregressional (STLS) parameter estimators in linear algebraic systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimators and thus become asymptotically best in the limit case of large variances of the random coordinates on the variety of solutions to the system observed with additive random perturbations.

作者简介

A. Lomov

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: lomov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016