On the asymptotic optimality of orthoregressional estimators
- Autores: Lomov A.A.1,2
-
Afiliações:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 10, Nº 4 (2016)
- Páginas: 511-519
- Seção: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212513
- DOI: https://doi.org/10.1134/S1990478916040074
- ID: 212513
Citar
Resumo
It is shown that the orthoregressional (STLS) parameter estimators in linear algebraic systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimators and thus become asymptotically best in the limit case of large variances of the random coordinates on the variety of solutions to the system observed with additive random perturbations.
Sobre autores
A. Lomov
Sobolev Institute of Mathematics; Novosibirsk State University
Autor responsável pela correspondência
Email: lomov@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
Arquivos suplementares
