Computational complexity of the original and extended diophantine Frobenius problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We deduce the law of nonstationary recursion which makes it possible, for given a primitive set A = {a1,...,ak}, k > 2, to construct an algorithm for finding the set of the numbers outside the additive semigroup generated by A. In particular, we obtain a new algorithm for determining the Frobenius numbers g(a1,...,ak). The computational complexity of these algorithms is estimated in terms of bit operations. We propose a two-stage reduction of the original primitive set to an equivalent primitive set that enables us to improve complexity estimates in the cases when the two-stage reduction leads to a substantial reduction of the order of the initial set.

Авторлар туралы

V. Fomichev

Financial University under the Government of the Russian Federation; National Research Nuclear University MEPhI

Хат алмасуға жауапты Автор.
Email: fomichev@nm.ru
Ресей, Leningradskii pr. 49, Moscow, 125993; Kashirskoe Sh. 31, Moscow, 115409

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017