Computational complexity of the original and extended diophantine Frobenius problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We deduce the law of nonstationary recursion which makes it possible, for given a primitive set A = {a1,...,ak}, k > 2, to construct an algorithm for finding the set of the numbers outside the additive semigroup generated by A. In particular, we obtain a new algorithm for determining the Frobenius numbers g(a1,...,ak). The computational complexity of these algorithms is estimated in terms of bit operations. We propose a two-stage reduction of the original primitive set to an equivalent primitive set that enables us to improve complexity estimates in the cases when the two-stage reduction leads to a substantial reduction of the order of the initial set.

Sobre autores

V. Fomichev

Financial University under the Government of the Russian Federation; National Research Nuclear University MEPhI

Autor responsável pela correspondência
Email: fomichev@nm.ru
Rússia, Leningradskii pr. 49, Moscow, 125993; Kashirskoe Sh. 31, Moscow, 115409

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017