Calculating the Spectral Entropy of a Stationary Random Process

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The problem of calculating the spectral entropy of a stationary random process is solved. The spectral entropy (σ-entropy) of a signal is understood as a scalar value characterizing the noise color; it describes the class of signals affecting a system depending on the band under study. By assumption, the random process is defined by a shaping filter, with the Gaussian white noise with a unit covariance matrix supplied at its input, or by an autocorrelation function. The spectral entropy of the stationary random process is analytically derived using a known mathematical model of the shaping filter in the form of a log-determinant function that depends on the transfer matrix and the observability Gramian of the filter. An algorithm for calculating the σ-entropy of stationary random processes with a known autocorrelation function is proposed. The method reduces to reconstructing the mathematical model of the shaping filter using its spectral density factorization. A numerical example is provided: spectral entropy is calculated for a disturbance describing the velocity of wind gusts that affect an aircraft.

Авторлар туралы

A. Belov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: a.a.belov@inbox.ru
Moscow, Russia

O. Andrianova

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: andrianovaog@gmail.com
Moscow, Russia

Әдебиет тізімі

  1. Методы классической и современной теории автоматического управления: Учебник в 5-и тт.; 2-е изд. перераб и доп. Т. 2: Статистическая динамика и идентификация систем автоматического управления / Под ред. К.А. Пупкова, Н.Д. Егупова. – М.: Издательство МГТУ им. Н.Э. Баумана, 2004. – 640 с.
  2. Wang, S., Wu, Z., Wu, Z.-G. Trajectory Tracking and Disturbance Rejection Control of Random Linear Systems // Journal of the Franklin Institute. – 2022. – Vol. 359, no. 9. – P. 4433–4448.
  3. Кочетков В.Т., Половко А.М., Пономарев В.М. Теория систем управления и самонаведения ракет. – М.: Наука, 1964. – 536 с.
  4. Burlibaşa, A., Ceangă, E. Rotationally Sampled Spectrum Approach for Simulation of Wind Speed Turbulence in Large Wind Turbines // Applied Energy. – 2013. – Vol. 111. – P. 624–635.
  5. Wang, C., Wang, X., Ju, P., et al. Survey on Stochastic Analysis Methods for Power Systems // Autom. Electr. Power Syst. – 2022. – Vol. 46. – P. 184–199.
  6. Boichenko, V.A., Belov, A.A., Andrianova, O.G. State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems // Mathematics. – 2024. – Vol. 22, no. 12. – Art. no. 3604. – DOI: https://doi.org/10.3390/math12223604
  7. Boichenko, V., Belov, A. On σ-entropy Analysis of Linear Stochastic Systems in State Space // Syst. Theor. Control Comput. J. – 2021. – Vol. 1, no. 1. – P. 30–35.
  8. Rudin, W. Real and Complex Analysis. – New York: McGraw-Hill, 1986. – 416 p.
  9. Mustafa, D., Glover, K. Minimum Entropy H∞ Control. – Heidelberg–Berlin: Springer, 1990. – 144 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).