Constructing Scientific Publication Profiles Based on Texts and Coauthorship Connections (in the Field of Control Theory and Its Applications)

Cover Page

Cite item

Abstract

The calculation of scientific publication profiles is crucial in the systematization of scientific knowledge and support for scientific decision-making. This paper proposes a method for forming publication profiles in the field of control theory, based on the integration of text analysis and coauthorship network analysis. We describe a basic algorithm that analyzes publication texts by a thematic classifier as well as its enhanced version that considers network connections within a heuristic approach. The methods are examined using expert assessments and quantitative metrics; according to the examination results, combining textual and network data significantly improves the accuracy of publication profiles. Hypotheses about a relationship between the thematic similarity and network proximity of publications are tested, and the approach proposed is validated accordingly. In addition, directions for further research are identified.

About the authors

D. A Gubanov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: dmitry.a.g@gmail.com
Moscow, Russia

V. S Melnichuk

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Bauman Moscow State Technical University

Author for correspondence.
Email: vs.melnichuk09@gmail.com
Moscow, Russia

References

  1. Крыжановская С.Ю., Власов А.В., Еремеев М.А., Воронцов К.В. Полуавтоматическая суммаризация тематических подборок научных публикаций: задачи и подходы // Тезисы докладов 20-й Всероссийской конференции с международным участием «Математические методы распознавания образов». – Москва, 2021. – С. 333–338. [Kryzhanovskaya, S.Y., Vlasov, A.V., Eremeev, M.A., Vorontsov, K.V. Poluavtomaticheskaya summarizatsiya tematicheskikh podborok nauchnykh publikatsii: zadachi i podkhody // Tezisy dokladov 20-i Vserossiiskoi konferentsii s mezhdunarodnym uchastiem «Matematicheskie metody raspoznavaniya obrazov». – Moscow, 2021. – P. 333–338. (In Russian)]
  2. Shibayama, S., Yin, D., Matsumoto, K. Measuring Novelty in Science with Word Embedding // PLoS ONE. – 2021. – No. 7. – P. 1–16.
  3. Yuan, W., Liu, P., Neubig, G. Can We Automate Scientific Reviewing? // Journal of Artificial Intelligence Research. – 2022. – No. 75. – P. 171–212.
  4. Cachola, I., Lo, K., Cohan, A., Weld, D. TLDR: Extreme Summarization of Scientific Documents // Findings of the Association for Computational Linguistics: EMNLP 2020. – 2020. – P. 4766–4777.
  5. Bao, P., Hong, W., Li, X. Predicting Paper Acceptance via Interpretable Decision Sets. // In: Companion Proceedings of the Web Conference 2021 (WWW '21). – New York: Association for Computing Machinery, 2021. – P. 461–467.
  6. Kasanishi, T., Isonuma, M., Mori, J., Sakata, I. SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation. – arXiv:2305.15186, 2023. – P. 1–19. – DOI: https://doi.org/10.48550/arXiv.2305.15186
  7. Blei, D.M., Ng, A.Y., Jordan, M.I. Latent Dirichlet Allocation // Journal of Machine Learning Research. – 2003. – No. 3. – P. 993–1022.
  8. Hasegawa, T., Arvidsson, H., Tudzarovski, N., et al. Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction // Information Processing in Medical Imaging. – 2023. – Vol. 13939. – P. 265–277.
  9. Xiong, C., Li, W., Liu, Y., Wang., M. Multi-Dimensional Edge Features Graph Neural Network on Few-Shot Image Classification // IEEE Signal Processing Letters. – 2021. – Vol. 28. – P. 573–577.
  10. Faber, L., Lu, Y., Wattenhofer, R. Should Graph Neural Networks Use Features, Edges, Or Both? – arXiv: 2103.06857.arXiv, 2021. – P. 1–12. – DOI: https://doi.org/48550/arXiv.2103.06857
  11. Zhou, J., Cui, G., Hu, S., et al. Graph Neural Networks: A Review of Methods and Applications // AI Open. – 2020. – Vol. 1. – P. 57–81.
  12. Kipf, T.N., Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. – arXiv:1609.02907, 2017. – P. 1–14. – DOI: https://doi.org/10.48550/arXiv.1609.02907
  13. Губанов Д.А., Кузнецов О.П., Суховеров В.С., Чхартишвили А.Г. О построении профилей в тематическом пространстве теории управления // Материалы 9-й Международной конференции «Знания-Онтологии-Теории». – Новосибирск, 2023. – С. 89–94. [Gubanov, D.A., Kuznetsov, O.P., Sukhoverov, V.S., Chkhartishvili, A.G. O postroenii profilei v tematicheskom prostranstve teorii upravleniya // Materialy 9-i Mezhdunarodnoi konferentsii “Znaniya-Ontologii-Teorii”. – Novosibirsk, 2023. – P. 89–94. (In Russian)]
  14. Кузнецов О.П., Суховеров В.С. Онтологический подход к оценке тематики научного текста // Онтология проектирования. – 2016. – Т. 6, № 1. – С. 55–66. [Kuznetsov, O.P., Sukhoverov, V.S. An Ontological Approach to Determining the Subject Matter of Scientific Text // Ontology of Designing. – 2016. – Vol. 6, no. 1. – P. 55–66. (In Russian)]

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).