THE SIMULTANEOUS START OF ACTIONS IN A DISTRIBUTED GROUP OF AUTOMATIC DEVICES: A DECENTRALIZED CONTROL METHOD WITH A SIGNAL REPEATER
- Authors: Stetsyura G.G1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 3 (2022)
- Pages: 55-64
- Section: Information Technology in Control
- URL: https://journals.rcsi.science/1819-3161/article/view/350865
- DOI: https://doi.org/10.25728/pu.2022.3.5
- ID: 350865
Cite item
Full Text
Abstract
This paper proposes a method for accelerating decentralized synchronization processes in the distributed control of a group of stationary or mobile automatic objects. With this method, the objects pass to specified states or affect the environment simultaneously or with required time delays. Some examples of such objects include actuators, computers in a computing cluster, distributed data processing facilities in supercomputers, and mobile robots. The object’s action depends on the current state of all objects and the environment. The actions should start with minimum delay after detecting the possibility to perform them. Arbitrarily located sources of executive commands and their receivers are synchronized by exchanging signals and messages between objects through an intermediary (a signal repeater). Means are used to accurately measure the time intervals of signal transfer between each object and the repeater. Group operations are used to accelerate synchronization processes. These operations involve a large number of objects simultaneously. The object’s data are used in operations simultaneously. Data are processed during their transmission without extra time. Operations are executed by network devices of the system objects and the common network device without any computing facilities (the repeater).
About the authors
G. G Stetsyura
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: gstetsura@mail.ru
References
- IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems / In IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), 2008. - P. 1-269. - doi: 10.1109/IEEESTD.2008.4579760.
- IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems / In IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008), 2020. - P. 1-499. - doi: 10.1109/IEEESTD.2020.9120376.
- Girela-López, F., López-Jiménez, J., Jiménez-López, M., et al. IEEE 1588 High Accuracy Default Profile: Applications and Challenges // IEEE Access, 2020. - Vol. 8. - P. 45211 - 45220.
- Sliwczynski, Ł., Krehlik, P., Buczek, Ł., Schnatz, H. Picoseconds-Accurate Fiber-Optic Time Transfer with Relative Stabilization of Lasers Wavelengths // Journal of Lightwave Technology. - 2020. - Vol. 38, no. 18. - P. 5056 - 5063.
- Moreira, P. Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications: A thesis submitted for the degree of Doctor of Philosophy (PhD). - University College of London, 2014. - 302 p. https://discovery.ucl.ac.uk/id/eprint/1461109/1/PMmoreira_PhD_Final-signed[1].pdf
- Стецюра Г.Г. Децентрализованная автономная синхронизация процессов взаимодействия мобильных объектов // Проблемы управления. - 2020. - № 6. - С.47-56. DOI: http://doi.org/10.25728/pu.2020.6.5.
- Стецюра Г.Г. Сетевая информационно-вычислительная поддержка взаимодействия подвижных роботов // Проблемы управления. - 2018. - № 5. - С. 56 - 65. DOI: http://doi.org/10.25728/pu.2018.5.6.
- Bosiljevac, M., Babić, D., Sipus, Z. Temperature-Stable LED-Based Light Source without Temperature Control // Proceedings of SPIE OPTO. - San Francisco, CA, USA, 2016. - Vol. 9754. - P. 1-6. - doi: 10.1117/12.2211576.
- Tennenhouse, D.L. Towards an Active Network Architecture // SIGCOMM Comput. Commun. Rev. - 1996. - Vol. 26, no. 2. http://ccr.sigcomm.org/archive/1996/apr96/ccr-9604-tennenhouse.pdf .
- Zilberman, N., Watts, P.М., Rotsos, C., Moore, A.W. Reconfigurable Network Systems and Software-Defined Networking // Proc. of the IEEE. - 2015. - Vol. 103, no. 7. - P. 1102 - 1124.
- In-Network Computing. - ACM SIGARCH, 2019. https://www.sigarch.org/in-network-computing-draft/
- Kim, D. Towards Elastic and Resilient In-Network Computing: PhD Thesis. - Carnegie Mellon University, 2021. http://reports-archive.adm.cs.cmu.edu/anon/2021/CMU-CS-21-143.pdf .
Supplementary files



