Tracking system DESIGN for a single-link sensorless manipulator under nonsmooth disturbances
- Authors: Antipov A.S1, Krasnov D.V1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 3 (2022)
- Pages: 3-15
- Section: Analysis and Design of Control Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/350861
- DOI: https://doi.org/10.25728/pu.2022.3.1
- ID: 350861
Cite item
Full Text
Abstract
The controlled plant is a single-link manipulator having an elastic connection to a DC motor and operating under uncertainty and incomplete measurements. The problem is to design a discontinuous feedback control for tracking a given reference signal of the plant’s angular position. The angular position and velocity of the manipulator are not available for measurements; the sensors are located only on the drive; parametric and exogenous disturbances affecting the manipulator are nonsmooth and cannot be directly suppressed by control applied to the actuator. Within the block approach, a decomposition procedure is developed to design a nonlinear local feedback control. This control ensures the controlled variable’s invariance with respect to uncertainties unmatched with the control action. A state observer of reduced order is constructed to estimate the angular position and velocity of the manipulator required for feedback design. The state variables in this observer are estimated using the principle of restoring exogenous disturbances by their action on the controlled plant. With this principle, a dynamic model of exogenous disturbances is not needed. In both problems (control and observation), S -shaped bounded continuous local feedbacks are used (smooth (sigmoidal) and nonsmooth (piecewise linear) local feedbacks, respectively). These local feedbacks suppress bounded disturbances acting with them through the same channel. The algorithms developed below do not require real-time identification of parametric and exogenous disturbances. However, they stabilize the observation and tracking errors with some accuracy. The effectiveness of the dynamic feedback is validated by the results of numerical simulation.
About the authors
A. S Antipov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: scholess18@mail.ru
Moscow, Russia
D. V Krasnov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: dim93kr@mail.ru
Moscow, Russia
References
- Spong, M., Hutchinson S., Vidyasagar M. Robot Modeling and Control. - New York: Wiley, 2005. - 496 p.
- Angeles, J. Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Third Edition. - New York: Springer, 2007. - 573 р.
- Голубев А.Е. Стабилизация однозвенного манипулятора при неполном измерении состояния: обратная связь по угловой координате звена манипулятора // Научое издание МГТУ им. Н.Э. Баумана. Наука и образование. - 2012. - № 11. - С. 395-412.
- Ананьевский И.М. Управление механическими системами с неопределенными параметрами посредством малых сил // ПММ. 2010. - Т. 74, вып. 1. - С. 133-150.
- Varghese E.S., Vincent A.K., Bagyaveereswaran V. Optimal Control of Inverted Pendulum System Using PID Controller, LQR and MPC // IOP Conference Series Materials Science and Engineering. - 2017. - Vol. 263, no. 5. - 15 p.
- Utkin, V.I., Guldner, J., Shi, J. Sliding Mode Control in Electromechanical Systems. - New York: CRC Press, 2009. - 485 p.
- Краснов Д.В., Антипов А.С. Синтез двухконтурного наблюдателя в задаче управления однозвенным манипулятором в условиях неопределенности // Проблемы управления. - 2021. - № 4. - С. 27-39.
- Feng, H., Qiao, W., Yin, C., et al. Identification and Compensation of Nonlinear Friction for a Electro-Hydraulic system // Mechanism and Machine Theory. - 2019. - Vol. 141. - P. 1-13.
- Пестерев А.В., Рапопорт Л.Б., Ткачев С.Б. Каноническое представление нестационарной задачи путевой стабилизации // Известия РАН. Теория и системы управления. - 2015. - Т. 54, № 4. - С. 160-176.
- Уткин В.А., Уткин А.В. Задача слежения в линейных системах с параметрическими неопределенностями при неустойчивой нулевой динамике // Автоматика и телемеханика. - 2014. - № 9. - С. 62-81.
- Краснова С.А., Сиротина Т.Г., Уткин В.А. Структурный подход к робастному управлению // Автоматика и телемеханика. - 2011. - № 8. - С. 65-95.
- Антипов А.С., Краснова С.А., Уткин В.А. Синтез инвариантных нелинейных одноканальных систем слежения с сигмоидальными обратными связями с обеспечением заданной точности слежения // Автоматика и телемеханика. - 2022. - № 1. - С. 40-66.
- Tsypkin Y., Polyak B. High-Gain Robust Control // European J. Control. - 1999. - Vol. 5. - P. 3-9.
- Бусурин В.И., Йин Н.В., Жеглов М.А. Анализ влияния линейного ускорения на характеристики кольцевого оптоэлектронного преобразователя угловой скорости и его компенсация // Автометрия. - 2019. - № 3. - С. 120-128.
- Краснова С.А. Оценивание внешних возмущений на основе виртуальных динамических моделей // Управление большими системами. - 2018. - Вып. 76. - С. 6-25.
- Кокунько Ю.Г., Краснов Д.В., Уткин А.В. Два метода синтеза наблюдателей состояния и возмущений для беспилотного летательного аппарата // Проблемы управления. - 2020. - № 1. - С. 3-16.
- Spong, M. Modeling and control of elastic joint robots // ASME Journal of Dynamic Systems, Measurement and Control. - 1987. - Vol. 109. - P. 310-319.
Supplementary files



