Expanding the Functionality of an Applied Geographic Information System for Modeling Search Correlation-Extreme Navigation Systems
- Authors: Alchinov A.I1, Gorokhovsky I.N2
-
Affiliations:
- 1Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Research Center of Topographic and Navigational Support, Central Research Institute No. 27
- Issue: No 5 (2023)
- Pages: 78-90
- Section: Information Technology in Control
- URL: https://journals.rcsi.science/1819-3161/article/view/291671
- DOI: https://doi.org/10.25728/pu.2023.5.6
- ID: 291671
Cite item
Full Text
Abstract
This paper further develops the concept of an applied geographic information system (AGIS) for modeling search correlation-extreme navigation systems (CENSs) intended to control moving objects. The possibility of using parallel, distributed, and cloud computing for modeling CENSs is investigated. In modern conditions, it is necessary to diagnose the operation of CENSs under stress exposure on their shooting systems. The stress exposure parameters are modeled by accessing specialized databases containing the characteristics of terrain objects in different electromagnetic radiation wavelength ranges. As a rule, such characteristics are unavailable in geographic information systems (GISs) and cloud environments. It is demonstrated that CENSs should be diagnosed by modeling the shooting system using cloud GISs. The issues of parallel computing for pattern recognition tasks are considered. The peculiarities of the parallel structure of CENS search algorithms are revealed. When implementing these algorithms in parallel computing systems, proper consideration of the peculiarities allows utilizing their advantages to the highest degree.
About the authors
A. I Alchinov
1Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: alchinov46@mail.ru
Moscow, Russia
I. N Gorokhovsky
Research Center of Topographic and Navigational Support, Central Research Institute No. 27
Email: gin_box@mail.ru
Moscow, Russia
References
- Алчинов А.И., Гороховский И.Н. Концепция создания прикладной географической информационной системы моделирования поисковых корреляционно-экстремальных систем автономной навигации // Проблемы управления. – 2022. – № 1. – С. 54–66. [Alchinov, A.I., Gorokhovsky, I.N. A Conceptual Applied Geographic Information System for Modeling Search Autonomous Correlation-Extreme N avigation Systems // Control Sciences. – 2022. – No. 1. – P. 43–54.]
- Алчинов А.И., Гороховский И.Н. Анализ стрессовых воздействий на условия автономной навигации поисковых корреляционно-экстремальных навигационных систем // Проблемы управления. – 2022. – № 6. – С. 42–58. [Alchinov, A.I., Gorokhovsky, I.N. Analysis of Stress Exposures on Autonomous Navigation Conditions in Search Correlation-Extreme Navigation Systems // Control Sciences. – 2022. – No. 6. – Р. 35–48.]
- Marinescu, D.C. Cloud Computing. Theory and Practice. Second Edition. – Waltham: Morgan Kaufmann Publishers, 2018. – 566 p.
- Воеводин В.В. Воеводин Вл.В. Параллельные вычисления. – СПб.: БХВ – Петербург, 2002. – 608 с. [Voevodin, V.V, Voevodin, Vl.V. Parallel'nye vychisleniya. – SPb.: BHV – Peterburg, 2002 . – 608 s. (In Russian)].
- Ежова Н.А., Соколинский Л.Б. Обзор моделей параллельных вычислений // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. – 2019. – Т. 8, № 3. – С. 58–91. – doi: 10.14529/cmse190304. [Ezhova. N.A., Sokolinskij, L.B. Obzor modelej parallel'nyh vychislenij // Vestnik YUUrGU. Seriya: Vychislitel'naya matematika i informatika. – 2019. – Vol. 8, no. 3. – S. 58–91. – doi: 10.14529/cmse190304. (In Russian)].
- Cloud computing. – URL: https://www.tadviser.ru/index.php/Cloud_Computing (дата обращения 29.03.2023). [Accessed March 29, 2023.]
- Zhang, G., Zhu, AX., Huang, Q. A GPU-Accelerated Adaptive Kernel Density Estimation Approach for Efficient Point Pattern Analysis on Spatial Big Data // International Journal of Geographical Information Science. – 2017. – Vol. 31, no. 10. – P. 2068–2097.
- Журавлёв Ю.И., Гуревич И.Б. Распознавание образов и распознавание изображений // Распознавание, классификация, прогноз. Математические методы и их применение: Ежегодник / Под ред. Ю.И. Журавлева. – М.: Наука, 1989. – Вып. 2. – С. 5–72. [Zhuravlyov, Yu.I., Gurevich, I.B. Raspoznavanie obrazov i raspoznavanie izobrazhenij // Raspoznavanie, klassifikaciya, prognoz. Matematicheskie metody i ih primenenie: Ezhegodnik / Pod red. Yu.I. Zhuravleva. – M.: Nauka, 1989. – Vyp. 2. – S. 5–72. (In Russian)].
- Nupponen, J., Taibi, D. Serverless: What It Is, What to Do and What not to Do // Proc. Int. Conf. Softw. Archit. (ICSA 2020), – Salvador, 2020. – P. 49–50. – doi: 10.1109/ICSA-C50368.2020.00016.
- Serrano, N., Gallardo, G., Hernantes. J. Infrastructure as a Service and Cloud Technologies // IEEE Software. – 2015. – Vol. 32, iss. 2. – P. 30–36.
- Черняк Л. Интеграция – основа облака // Открытые системы. СУБД. – 2011. – № 7. – URL: https://www.osp.ru/ os/2011/07/13010473/ [Chernjak, L. Integracija – osnova oblaka // Otkrytye sistemy. SUBD. – 2011. – № 7. – URL: https://www.osp.ru/os/2011/07/13010473/ (In Russian)]
- Yang, C., Huang, Q., Li, Z., et al. Big Data and Cloud Computing: Innovation Opportunities and Challenges // International Journal of Digital Earth. – 2016. – Vol. 10, no. 1. – P. 1–41, doi: 10.1080/17538947.2016.1239771.
- Ye, X., Huang, Q., Li, W. Integrating Big Social Data, Computing and Modeling for Spatial Social Science // Cartography and Geographic Information Science. – 2016. – Vol. 43, no. 5. – P. 377–378.
- Huang, Q., Li, J., Zhang, T. Domain Application of High Performance Computing in Earth Science: An Example of Dust Storm Modeling and Visualization // In: High Performance Computing for Geospatial Applications. – Cham: Springer, 2020. – P. 249–268.
- Li, Z., Tang, W., Huang, Q., et al. Introduction to Big Data Computing for Geospatial Applications // International Journal of Geo-Information. – 2020. – Vol. 9, no. 8. – Art. no. 487.
- Google Cloud Tensor Processing Unit. – URL: https://tadviser.com/index.php/Product:Google_ Cloud_ Tensor_Processing_Unit (дата обращения 12.10.2022). [Accessed October 10, 2022.]
- Технология работы в ГИС «Панорама» с помощью онлайн-сервиса GeoCloud. – URL: https://gisinfo.ru/techno/geocloud.htm (дата обращения 03.10.2022). [Tekhnologiya raboty v GIS «Panorama» s pomoshch'yu onlain-servisa GeoCloud. – URL: https://gisinfo.ru/techno/geocloud.htm (accessed October 3, 2022).]
- BIM в облаке: обзор ключевых решений для информационного моделирования. – URL: https://www.cloud4y.ru/blog/cloud-bim-solutions-overview/ (дата обращения 20.05.2023). [BIM v oblake: obzor klyuchevykh reshenii dlya informatsion-nogo modelirovaniya. – URL: https://www.cloud4y.ru/blog/cloud-bim-solutions-overview/ (accessed May 20, 2023).]
- Лубнин Д.С. Модернизация инфраструктуры пространственных данных с использованием облачных технологий // Изв. вузов «Геодезия и аэрофотосъемка». – 2018. – Т. 62, № 5. – С. 590–598. – doi: 10.30533/0536-101X-2018-62-5-590-598. [Lubnin, D.S. Modernization of spatial data infrastructure using cloud technologies // Izv. vuzov «Geodesy and aerial photography». – 2018. – Vol. 62, no. 5. – P. 590–598. – doi: 10.30533/0536-101X-2018-62-5-590-598. (In Russian)].
- Сечин А.Ю., Адров В.Н. Фотограмметрия и облачные технологии // Геопрофи. – 2017. – № 2. – С. 24–27. [Sechin, A.Yu., Adrov, V.N. Photogrammetry and Cloud Technologies // Geoprofi. – 2017. – No. 2. – P. 24–27. (In Russian)].
- Алчинов А.И., Беклемишев Н.Д., Кекелидзе В.Б. Методы цифровой фотограмметрии. Технология «Талка». – М.: Московский государственный университет печати, 2007. – 259 с. [Alchinov, A.I., Beklemishev, N.D., Kekelidze, V.B. Metody cifrovoj fotogrammetrii. Tekhnologiya «Talka». – M.: Moskovskij gosudarstvennyj universitet pechati, 2007. – 259 s. (In Russian)].
- Черемисинов Д.И. Закон Амдала и границы параллельных вычислений // Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ высокого уровня». – Минск, 2020. – C. 294–300. [Cheremisinov, D.I. Amdahl's Law and the Boundaries of Parallel Computing // The sixth International Scientific and Practical Conference «BIG DATA and Advanced Analytics. BIG DATA and High-level analysis». – Minsk, 2020. – P. 294–300. (In Russian)].
- Yu, M., Bambacus, M., Cervone, G., et al. Spatiotemporal Event Detection: A Review // International Journal of Digital Earth. – 2020. – Vol. 13, no. 1. – P. 1–27.
- Lloyd, W., Ramesh, S., Chinthalapati, S., et al. Serverless computing: An Investigation of Factors Influencing Microservice Performance // Proc. Int. Conf. Cloud Eng. (IC2E). – Orlando, 2018. – P. 159–169. – doi: 10.1109/IC2E.2018.00039.
- Фомичев А., Бондарь О. Бессерверная альтернатива традиционным базам данных // Открытые системы. СУБД. – 2021. № 1. – С. 20–23. doi: 10.51793/OS.2021.86.20.003. [Fomichev, А., Bondar, О. A serverless alternative to traditional databases // Open systems. DBMS. – 2021. – No. 1. – P. 20–23. doi: 10.51793/OS.2021.86.20.003. (In Russian)].
Supplementary files



