Models of Joint Dynamics of Opinions and Actions in Online Social Networks. Part I: Primary Data Analysis
- Authors: Gubanov D.A1, Novikov D.A1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 2 (2023)
- Pages: 37-53
- Section: Control in Social and Economic Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/291584
- DOI: https://doi.org/10.25728/pu.2023.2.4
- ID: 291584
Cite item
Full Text
Abstract
Based on VKontakte data, we study the influence of various factors on the dynamics of opinions and actions both at the macro level (“public opinion”) and at the micro level (the opinions and actions of individual agents). Primary analysis results are presented for the dynamics of opinions and actions of agents in this social network. In particular, the growing polarization of opinions at the macro level is detected; changes in the opinions of agents over time are observed; socio-demographic characteristics of agents who changed their opinions are determined; a good consistency between the opinions and actions of agents is revealed; finally, an explicit relationship between the opinions and actions of agents is established.
About the authors
D. A Gubanov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: dmitry.a.g@gmail.com
Moscow, Russia
D. A Novikov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: novikov@ipu.ru
Moscow, Russia
References
- Губанов Д.А. Влияние в социальных сетях: варианты формализации // Управление большими системами. – 2020. – Вып. 85. – С. 51–71. [Gubanov, D.A. Influence in Social Networks: Formalization Variants // Large-Scale Systems Control. – 2020. – Iss. 85. – P. 51–71. (In Russian)]
- Губанов Д.А., Новиков Д.А., Чхартишвили А.Г. Социальные сети: модели информационного влияния, управления и противоборства. 3-е изд., перераб. и дополн. – М.: МЦНМО, 2018. – 224 с. [Gubanov, D.A., Novikov, D.A., Chkhartishvili, A.G. Social'nye seti: modeli informacionnogo vliyaniya, upravleniya i pro-tivoborstva. 3-e izd., pererab. i dopoln. – M.: MCNMO, 2018. – 224 s. (In Russian)]
- Губанов Д.А., Чхартишвили А.Г. Влиятельность пользователей и метапользователей социальной сети // Проблемы управления. – 2016. – № 6. – С. 12–17. [Gubanov, D.A., Chkhartishvili, A.G. Meta-Agent and User Influence Levels in a Social Network // Control Sciences. – 2016. – No. 6. – P. 12–17. (In Russian)]
- Новиков Д.А., Бреер В.В., Рогаткин А.Д. Управление толпой: математические модели порогового коллективного поведения. – М.: ЛЕНАНД, 2016. – 168 с. [Novikov, D.A., Breer, V.V., Rogatkin, A.D. Upravlenie tolpoj: matematicheskie modeli porogovogo kollektivnogo povedeniya. – M.: LENAND, 2016. – 168 s. (In Russian)]
- Gubanov, D. A Study of a Complex Model of Opinion Dynamics in Social Networks / Journal of Physics: Conference Series. – 2021. – Vol. 1740. – P. 1–6.
- Allbaracin, D., Shavitt, S. Attitudes and Attitude Change // Annu. Rev. Psychol. – 2018. – Vol. 69, no. 4. – P. 1–29.
- Banisch, S., Olbrich, E. Opinion Polarization by Learning from Social Feedback // The Journal of Mathematical Sociology. – 2019. – Vol. 43. – P. 76–103.
- DeGroot, M. Reaching a Consensus // Journal of American Statistical Assoсiation. – 1974. – No. 69. – P. 118–121.
- Granovetter, M. Threshold Models of Collective Behavior // The American Journal of Sociology. – 1978. – Vol. 83, no. 6. – P. 1420–1443.
- Hunter, J., Danes, J., Cohen, S. Mathematical Models of Attitude Change. – Orlando: Academic Press, 1984. – 339 p.
- Schelling, T. Micromotives and Macrobehaviour. – New York, London: Norton & Co Ltd, 1978. – 256 p.
- Xia, H., Wang, H., Xuan, Z. Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research // Int. Journal of Knowledge and Systems Science. – 2011. – Vol. 2, no. 4. – P. 72–91.
- Зимбардо Ф., Ляйппе М. Социальное влияние. – СПб.: Питер, 2000. – 448 с. [Zimbardo, F., Lyajppe, M. Social'noe vliyanie. – SPb.: Piter, 2000. – 448 s. (In Russian)]
- Майерс Д. Социальная психология. – СПб.: Питер, 1998. – 688 с. [Majers, D. Social'naya psihologiya. – SPb.: Piter, 1998. – 688 s. (In Russian) ]
- Чалдини Р. Психология влияния. – СПб.: Питер, 2003. – 258 с. [Chaldini, R. Psihologiya vliyaniya. – SPb.: Piter, 2003. – 258 s. (In Russian)]
- Pandemic Profiteers: the Business of Anti-vaxx // Center for Countering Digital Hate (CCDH). – 2021. – URL: https://www.counterhate.com/_files/ugd/f4d9b9_13cbbbef105e459285ff21e94ec34157.pdf.
- Новиков Д.А. Модели динамики психических и поведенческих компонент деятельности в коллективном принятии решений // Управление большими системами. – 2020. – Вып. 85. – С. 206–237. [Novikov, D.A. Dynamics Models of Mental and Behavioral Components of Activity in Collective Decision-Making // Large-Scale Systems Control. – 2020. – Iss. 85. – P. 206–237. (In Russian)]
- Gubanov, D., Kozitsin, I., Chkhartishvili, A. COVID-19 Information Consumption and Dissemination: A Study of Online Social Network VKontakte / Proceedings of the 14th International Conference «Management of Large-Scale System Development». – Moscow, 2021. – P. 1–5. – URL: https://ieeexplore.ieee.org/document/9600199.
- Gubanov, D., Kozitsin, I., Chkhartishvili, A. Face Mask Perception during the COVID-19 Pandemic: An Observational Study of Russian Online Social Network VKontakte // Advances in Systems Science and Applications. – 2021. – Vol. 21. – No. 3. – P. 91–100.
- Kuratov, Y., Arkhipov, M. Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language // arXiv preprint arXiv:1905.07213. 2019.
- Babakov, N., Logacheva, V., Panchenko, A. Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable Topics for the Russian Language // arXiv:2203.02392. – 2022. – DOI: https://doi.org/10.48550/arXiv.2203.02392.
- Grigoriev, O., Kuznetsova, Y., Nikitina, E., et al. Causative-Emotive Analysis. Part I. Emotional Reactions of Social Networks Users Research // Psikhologicheskii Zhurnal. – 2022. – № 3 (43). – P. 114–121.
- Nugamanov, E., Loukachevitch, N., Dobrov, B. Extracting Sentiments towards COVID-19 Aspects / CEUR Workshop Proceedings. – Moscow, 2021. – P. 299–312.
- Pronoza E., Panicheva P., Koltsova O., Rosso P. Detecting Ethnicity-targeted Hate Speech in Russian Social Media Texts // Information Processing and Management. – 2021. – Vol. 58, no. 6. – Art. no. 102674.
- Howe, N., Strauss, W. Generations: The History of America’s Future, 1584 to 2069. – New York: William Morrow & Company, 1991.
- Dong, E., Du, H., Gardner, L. An Interactive Web-based Dashboard to Track COVID-19 in Real Time // Lancet Inf Dis. – 2020. – Vol. 20(5). – P. 533–534.
- Newman, M. Mixing Patterns in Networks // Physical Review E. – 2003. – No. 2 (67). – P. 026126.
- Newman, M. Modularity and Community Structure in Networks // Proceedings of the National Academy of Sciences of the United States of America. – 2006. – Vol. 103, no. 23. – P. 8577–8696. – URL: https://arxiv.org/abs/physics/0602124v1.
- Clauset, A., Newman, M., Moore, C. Finding Community Structure in Very Large Networks // Physical Review E. – 2004. – Vol. 70, no. 6. – 2004. – doi: 10.1103/PhysRevE.70.066111.
- Kozitsin, I. Opinion Dynamics of Online Social Network Users: a Micro-level Analysis // Journal of Mathematical Sociology. – 2021. – P. 1–41. – DOI: https://doi.org/10.1080/0022250X.2021.1956917.
Supplementary files



