Interval Observer Design for Discrete Linear Time-Invariant Systems with Uncertainties

Cover Page

Cite item

Full Text

Abstract

This paper considers the problem of constructing an interval observer for systems described by discrete-time linear models under uncertainties in the form of exogenous disturbances and measurement noise (unknown bounded functions). Such an observer is designed using the minimal-dimension model of the original system invariant with respect to the disturbances. The dynamic matrix of this model is defined in the identification canonical form. We present relations to design an interval observer of minimal complexity for estimating the set of admissible values of a given linear function of the state vector. If the observer invariant with respect to the disturbances does not exist, we suggest a method to construct an observer with minimal sensitivity to them based on the singular value decomposition of system matrices. Theoretical results are illustrated by an example.

About the authors

A. N Zhirabok

Institute of Marine Technology Problems, Russian Academy of Sciences, Far Eastern Branch; Far Eastern Federal University

Email: zhirabok@mail.ru
Vladivostok, Russia

A. V Zuev

Institute of Marine Technology Problems, Russian Academy of Sciences, Far Eastern Branch; Far Eastern Federal University

Email: alvzuev@yandex.ru
Vladivostok, Russia

C. I Kim

Far Eastern Federal University

Email: kim.ci@dvfu.ru
Vladivostok, Russia

References

  1. Жирабок А.Н., Зуев А.В., Ким Чхун Ир. Метод построения интервальных наблюдателей для стационарных линейных систем // Изв. РАН. ТиСУ. – 2022. – № 5. – С. 3–13. [Zhirabok, A., Zuev, A., Kim Chung Il Method to Design Interval Observers for Linear Time-Invariant Systems // Journal of Computer and Systems Sciences International. – 2022. – Vol. 61, no. 5. – P.485–495.]
  2. Ефимов Д.В., Раисси Т. Построение интервальных наблюдателей для динамических систем с неопределенностями // Автоматика и телемеханика. – 2016. – № 2. – С. 5–49. [Efimov, D., Raissi, T. Interval Observer Design for Dynamic Systems with Uncertainties // Automation and Remote Control. – 2016. – Vol. 77, iss. 2. – P. 191–225.]
  3. Khan, A., Xie, W, Zhang, L., Liu, L. Design and Applications of Interval Observers for Uncertain Dynamical Systems // IET Circuits Devices Syst. – 2020. – Vol. 14. – P. 721–740.
  4. Kolesov, N., Gruzlikov, A., Lukoyanov, E. Using Fuzzy Interacting Observers for Fault Diagnosis in Systems with Parametric Uncertainty // Proc. XII-th Inter. Sympos. «Intelligent Systems», INTELS’16. – Moscow, Russia, 2016. – P. 499–504.
  5. Кремлев А.С., Чеботарев С.Г. Синтез интервального наблюдателя для линейной системы с переменными параметрами // Изв. вузов. Приборостроение. – 2013. – Т. 56, № 4. – C. 42–46. [Kremlev, A., Chebotarev, S. Interval Observer Synthesis for Linear LPV System // Izv. Vuzov. Priborostroenie. – 2013. – Vol. 56, no. 4. – P. 42–46 (In Russian)]
  6. Chebotarev, S., Efimov, D., Raissi, T., Zolghadri, A. Interval Observers for Continuous-Time LPV Systems with L1/L2 Performance // Automatica. – 2015. – Vol. 51. – P. 82–89.
  7. Mazenc, F., Bernard, O. Asymptotically Stable Interval Observers for Planar Systems with Complex Poles // IEEE Trans. Automatic Control. – 2010. – Vol. 55, no. 2. – P. 523–527.
  8. Blesa, J., Puig, V., Bolea, Y. Fault Detection Using Interval LPV Models in an Open-Flow Canal // Control Engineering Practice. – 2010. – Vol. 18. – P. 460–470.
  9. Zheng, G., Efimov, D., Perruquetti, W. Interval State Estimation for Uncertain Nonlinear Systems // Proc. IFAC Nolcos. – Toulouse, France, 2013.
  10. Zhang, K., Jiang, B., Yan, X., Edwards, C. Interval Sliding Mode Based Fault Accommodation for Non-minimal Phase LPV Systems with Online Control Application // Intern. J. Control. – 2020. – Vol. 93, no. 11 – P. 2675–2689. – doi: 10.1080/00207179.2019.1687932.
  11. Жирабок А.Н., Зуев А.В., Шумский А.Е. Методы идентификации и локализации дефектов в линейных системах на основе скользящих наблюдателей // Изв. РАН. Теория и системы управления. – 2019. – № 6. – С. 73–89. [Zhirabok, A., Zuev, A., Shumsky, A.E. Methods of Diagnosis in Linear Systems Based on Sliding Mode Observers. Journal of Computer and Systems Sciences International. – 2019. – Vol. 58, no. 6. – P. 898–914.]
  12. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. – М.: Мир, 1977. [Kwarernaak, C., Sivan, R. Linear Optimal Control Systems. – N.-Y.: Wiley, 1972.].

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).