Prospective Approaches to Predicting the Remaining Useful Life of Aircraft Engines
- Authors: Kulida E.L1, Lebedev V.G1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 6 (2024)
- Pages: 3-19
- Section: Surveys
- URL: https://journals.rcsi.science/1819-3161/article/view/286798
- ID: 286798
Cite item
Abstract
This survey covers the literature on the fault diagnosis and prediction of the remaining useful life of aircraft engines based on deep learning. A formal statement of the remaining useful life estimation problem is given. The basic architectures of deep neural networks are considered to detect rare failures and predict the next failures using aircraft engine condition monitoring data. The extraction of informative features using autoencoders is discussed. The structure of long short-term memory (LSTM) and attention mechanism (AM) cells applied in deep neural networks to predict the remaining useful life is described. The problem of integrating remaining useful life prediction into maintenance planning based on reinforcement learning is considered.
About the authors
E. L Kulida
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: elena-kulida@yandex.ru
Moscow, Russia
V. G Lebedev
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: lebedev-valentin@yandex.ru
Moscow, Russia
References
- Fentaye, D., Zaccaria, V., Kyprianidis, K. Aircraft Engine Performance Monitoring and Diagnostics Based on Deep Convolutional Neural Networks // Machines. – 2021. – Vol. 9, no. 12. – Art. no. 337. – doi: 10.3390/machines9120337
- Kordestani, M., Orchard, M.E., Khorasani, K., Saif, M. An Overview of the State of the Art in Aircraft Prognostic and Health Management Strategies // IEEE Transaction on Instrumentation and Measurement. – 2023. – Vol. 72. – P. 1–15. – doi: 10.1109/TIM.2023.3236342
- Upadhyay, R., Amhia, H. LSTM-Based Approach for Remaining Useful Life Prediction of Air Craft Engines // ITM Web of Conferences. – 2023. – Vol. 57. – Art. no. 03004. – doi: 10.1051/itmconf/20235703004
- Stanton, I., Munir, K., Ikram, A., El-Bakry, M. Predictive Maintenance Analytics and Implementation for Aircraft: Challenges and Opportunities // Systems Engineering. – 2023. – Vol. 26, iss. 2. – Р. 216–237. – doi: 10.1002/sys.21651
- Кулида Е.Л., Лебедев В.Г. Прогнозирование технического обслуживания авиационных двигателей на основе глубокого обучения // Материалы XIV Всероссийского совещания по проблемам управления (ВСПУ-2024). – Москва, 2024. – С. 2502–2506.
- Сай В.К., Щербаков М.В. Прогнозирование отказов сложных многообъектных систем на основе комбинации нейросетей: пути повышения точности прогнозирования // Прикаспийский журнал: управление и высокие технологии. – 2020 – № 1 (49). – С. 49–60. – doi: 10.21672/2074–1707.2020.49.4.049–060
- Scott, M.J., Verhagen, W.J.C., Bieber, M.T., Marzocca, P. A Systematic Literature Review of Predictive Maintenance for Defence Fixed–Wing Aircraft Sustainment and Operations // Sensors. – 2022. – Vol. 22, no. 18. – Art. no. 7070. – doi: 10.3390/s22187070
- Khalid, S., Song, J., Azad, M.M. A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management // Mathematics. – 2023. – Vol. 11, no. 18. – Art. no. 3837. – doi: 10.3390/math11183837
- Naderi, E., Meskin N., Khorasani, K. Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model–based Approach // J. Eng. Gas Turbines Power. – 2012. – Vol. 13, no. 1. – doi: 10.1115/GT2010-23442
- Amirkhani, S., Tootchi, A., Chaibakhsh, A. Fault Detection and Isolation of Gas Turbine Using Series–parallel NARX Model // ISA Transactions. – 2022. – Vol. 120. – P. 205–221. – doi: 10.1016/j.isatra.2021.03.019
- Gharoun, H., Keramati, A., Nasiri, M., Azadeh, A. An Integrated Approach for Aircraft Turbofan Engine Fault Detection Based on Data Mining Techniques // Expert system. – 2021. – Vol. 36, no. 4. – doi: 10.1111/exsy.12370
- Gharoun, H., Hamid, M., Ghaderi, S.F., Nasiri, M. Anomaly Detection via Data Techniques for Aircraft Engine Operation Monitoring // Proceedings of 4th International Industrial Engineering Conference (IIEC 2018). – Tehran, Iran, 2018. – P. 1–15.
- Garcia, C.E., Camana, M.R., Koo, I. Machine Learning–based Scheme for Multi-class Fault Detection in Turbine Engine Disks // ICT Express. – 2021. – Vol. 7, iss. 1. – P. 15–22. – doi: 10.1016/j.icte.2021.01.009
- Li, Z, Goebel, K., Wu, D. Degradation Modeling and Remaining Useful Life Prediction of Aircraft Engines Using Ensemble Learning // Journal of Engineering for Gas Turbines and Power. – 2018. – Vol. 141, no. 4. – doi: 10.1115/1.4041674
- Celikmih, K., Inan, O., Uguz, H., et al. Failure Prediction of Aircraft Equipment Using Machine Learning with a Hybrid Data Preparation Method // Scientific Programming. – 2020. – Vol. 10. – doi: 10.1155/2020/8616039.
- Costa, N., Sánchez, L. Variational Encoding Approach for Interpretable Assessment of Remaining Useful Life Estimation // Reliability Engineering and System Safety. – 2022. – Vol. 222, no. 1. – doi: 10.1016/j.ress.2022.108353
- Abdullah, T.A.A., Zahid, M.S.M., Turki, A.F., et al. Sig-LIME: a Signal-Based Enhancement of LIME Explanation Technique // IEEE Access. – 2024. – Vol. 12. – P. 52641-52658. – doi: 10.1109/ACCESS.2024.3384277
- Gao, J., Wang, Y., Sun, Z. An Interpretable RUL Prediction Method of Aircraft Engines Under Complex Operating Conditions Using Spatio–temporal Features // Measurement Science and Technology. – 2024. – Vol. 35, no. 7. – doi: 10.1088/1361–6501/ad3b2c
- Chao, M.A., Kulkarni, C., Goebel, K., Fink, O. Fusing Physics-based and Deep Learning Models for Prognostics // Reliability Engineering and System Safety. – 2022. – Vol. 217, no. 3. – doi: 10.1016/ress.2021.107961
- Adhikari, P., Rao, H.G., Buderath, M. Machine Learning Based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance // Proceedings of the 10th International Symposium on NDT in Aerospace. – Dresden, Germany, 2018. – P. 24–26.
- Graves, A., Schmidhuber, J. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures // Neural Networks. – 2005. – Vol. 18, no. 5–6. – P. 602–610. – doi: 10.1016/j.neunet.2005.06.042
- Graves, A., Jaitly, N., Mohamed, A.R. Hybrid Speech Recognition with Deep Bidirectional LSTM // Proceedings of 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. – Olomouc, Czech Republic, 2014. – P. 273–278. – doi: 10.1109/ASRU.2013.6707742
- Kefalas, M., Baratchi, M., Apostolidis, A., et al. Automated Machine Learning for Remaining Useful Life Estimation of Aircraft Engines // Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM). – Detroit, USA, 2021. – doi: 10.1109/ICPHM51084.2021.9486549
- Liu, L., Song, X., Zhou, Z. Aircraft Engine Remaining Useful Life Estimation Via a Double Attention-based Data-driven // Reliability Engineering and System Safety. – 2022. – Vol. 221, no. 3. – doi: 10.1016/j.ress2022.108330
- Сай В.К. Глубокие нейронные сети для предсказательного технического обслуживания // Моделирование, оптимизация и информационные технологии. – 2019. – Т. 7, № 4. – doi: 10.26102/2310-6018/2019.27.4.011
- Xia, J, Feng, Y., Lu, C., et al. LSTM-Based Multi-layer Self-attention Method for Remaining Useful Life Estimation of Mechanical Systems // Engineering Failure Analysis. – 2021. – Vol. 125, no. 12. – doi: 10.1016/j.engfainal.2021.105385
- Dangut, M.D., Skaf, Z., Jennions, I.K. Rare Failure Prediction Using an Integrated Auto–encoder and Bidirectional Gated Recurrent Unit Network // IFAC-PapersOnLine. – 2020. – Vol. 53, iss. 4. – P. 276–282.
- Dangut, M.D., Jennions, I.K., King, S., Skaf, Z. A Rare Failure Detection Model for Aircraft Predictive Maintenance Using a Deep Hybrid Learning Approach // Neural Computing and Applications. – 2023. – Vol. 35, no. 4. – P. 2991–3009. – doi: 10.1007/s00521-022-07167-8
- Сыпало, К.И., Пономарев, А.К., Ахатов, И.Ш. Перспективные технологии для авиационной промышленности: Аналитический обзор. – М.: НАУКА, 2017. – 463 с.
- Badea, V.E., Zamfiroiu, A., Boncea, R. Big Data in the Aerospace Industry // Informatica Economica. – 2018. – Vol. 22, no. 1. – P. 17–24. – doi: 10.12948/issn14531305/1.2018.02
- Zhao, Y., Wang, Y. Remaining Useful Life Prediction for Multi-sensor Systems Using a Novel End-to-End Deep-learning Method // Measurement. – 2021. – Vol. 182, no. 163. – doi: 10.1016/j.measurement.2021.109685
- Frederick, D.K., DeCastro, J.A., Litt, J.S. User's Guide for the Commercial Modular Aero-propulsion System Simulation (C-MAPSS). Report no. NASA/TM-2007-215026. – Cleveland: National Aeronautics and Space Administration, 2007. – 47 p.
- Saxena, A., Goebel, K., Simon, D., Eklund, N. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation // Proceedings of International Conference on Prognostics and Health Management. – Denver, USA, 2008. – doi: 10.1109/PHM.2008.4711414
- Song, Y., Bliek, L., Xia, T., Zhang, Y. A Temporal Pyramid Pooling-Based Convolutional Neural Network for Remaining Useful Life Prediction // Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021). – P. 603–609. – doi: 10.3850/978–981-18-2016-8_478-cd
- Chao, M.A., Kulkarni, C., Goebel, K., Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics // Data. – 2021. – Vol. 6 (1), no. 5. – doi: 10.3390/data6010005
- Azyus, A.F. Determining the Method of Predictive Maintenance for Aircraft Engine Using Machine Learning // Journal of Computer Science and Technology Studies. – 2022. – Vol. 4, no. 1. – doi: 10.32996/jcsts.2022.4.1.1
- Hasib, A.A., Rahman, A., Khabir, M., Shawon, M.T.R. An Interpretable Systematic Review of Machine Learning Models for Predictive Maintenance of Aircraft Engine // arXiv. – 2023. – arXiv:2309.13310v1. – DOI: https://doi.org/10.48550/arXiv.2309.13310
- Liu, T., Bao, J., Wang, J., Wang, J. Deep Learning for Industrial Image: Challenges, Methods for Enriching the Sample Space and Restricting the Hypothesis Space, and Possible Issue // International Journal of Computer Integrated Manufacturing. – 2022. – Vol. 35, iss. 10–11. – P. 1077–1106. – doi: 10.1080/0951192X.2021.1901319
- Hinton, G.E., Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks // Science. – 2006. – Vol. 313. – P. 504–507. – doi: 10.1126/science.1127647
- Fu, S., Zhong, S., Lin, L., Zhao, M. A Re-optimized Deep Auto-encoder for Gas Turbine Unsupervised Anomaly Detection // Engineering Applications of Artificial Intelligence. – 2021. – Vol. 101, no. 12. – doi: 10.1016/j.engappi.2021.104199
- Babu, G.S., Zhao, P., Li, X. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life // Proceedings of the International Conference on Database Systems for Advanced Applications (DASFAA). – Dallas, USA, 2016. – Vol. 9642. – P. 214–228. – doi: 10.1007/978-3-319-32025-0_14
- Li, X., Ding, Q., Sun, J.Q. Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks // Reliability Engineering and System Safety. – 2018. – Vol. 172, no. 1-2. – doi: 10.1016/j.ress.2017.11.021
- Li, H., Zhao, W., Zhang, Y., Zio, E. Remaining Useful Life Prediction Using Multiscale Deep Convolutional Neural Network // Applied Soft Computing. – 2020. – Vol. 89. – doi: 10.1016/j.asoc.2020.106113
- Абдуракипов С.С., Бутаков Е.Б. Сравнительный анализ алгоритмов машинного обучения для определения предотказных и аварийных состояний авиадвигателей // Автометрия. – 2020. – Т. 56, № 6. – С. 34–48. – doi: 10.15372/AUT20200605
- Schuster, M., Paliwal, K.K. Bidirectional Recurrent Neural Networks // IEEE Transactions on Signal Processing. – 1997. – Vol. 45, no. 11. – P. 2673–2681. – doi: 10.1109/78.650093
- Hu, K., Cheng, Y., Wu, J., et al. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine // IEEE Transactions on Cybernetics. – 2021. – Vol. 53, no. 4. – P. 2531–2543. – doi: 10.1109/TCYB.2021.3124838
- Hochreiter, S., Schmidhuber, J. Long Short-term Memory // Neural Computation. – 1997. – Vol. 9, no. 8. – P. 1735–1780. – doi: 10.1162/neco.1997.9.8.1735
- Wang, J., Wen, G., Yang, S., Liu, Y. Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network // Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing). -Chongqing, China, 2018. – P. 1037–1042. – doi: 10.1109/PHM-Chongqing.2018.00184
- Khan, K., Sohaib, M., Rashid, A., et al. Recent Trends and Challenges in Predictive Maintenance of Aircraft’s Engine and Hydraulic System // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2021. – Vol. 43. – P. 1–17. – doi: 10.1007/s40430-021-03121-2
- Wu, Q., Ding, K., Huang, B. Approach for Fault Prognosis Using Recurrent Neural Network // Journal of Intelligent Manufacturing. – 2020. – Vol. 31, no. 3. – P. 1621–1633. – doi: 10.1007/s10845-018-1428-5
- Peng, C., Chen, Y., Chen, Q., et al. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion // Sensors. – 2021. – Vol. 21, no. 2. – doi: 10.3390/s21020418
- da Rosa, T.G., de Melani, A.H.A., Pereira, F.H., et al. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis // Sensors. – 2022. – Vol. 22, no. 24. – doi: 10.3390/s22249738
- Peng, C., Wu, J., Wang, Q. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference // Entropy. – 2022. – Vol. 24, no. 12. – doi: 10.3390/e24121818
- Wang, X., Huang, T., Zhu, K., Zhao, X. LSTM-Based Broad Learning System for Remaining Useful Life Prediction // Mathematics. – 2022. – Vol. 10, no. 12. – doi: 10.3390/math10122066
- Azyus, A.F., Wijaya, S.K., Naved, M. Determining RUL Predictive Maintenance on Aircraft Engines Using GRU // Journal of Mechanical, Civil and Industrial Engineering. – 2022. – Vol. 3, no. 3. – P. 79–84. – doi: 10.32996/jmcie.2022.3.3.10
- Boujamza, A., Elhaq, S.L. Attention-Based LSTM for Remaining Useful Life Estimation of Aircraft Engines // Advances in Control and Optimization of Dynamical Systems. – 2022. – Vol. 55, iss. 12. – P. 450–455. – doi: 10.1016/j.ifacol.2022.07.353
- Jiang, Y., Li, C., Yang, Z., et al. Remaining Useful Life Estimation Combining Two-step Maximal Information Coefficient and Temporal Convolutional Network with Attention Mechanism // IEEE Access. – 2021. – Vol. 9. – P. 16 323–16 336. – doi: 10.1109/ACCESS.2021.3052305
- Xia, J., Feng, Y., Teng, D., et al. Distance Self–attention Network Method for Remaining Useful Life Estimation of Aeroengine with Parallel Computing // Reliability Engineering and System Safety. – 2022. – Vol. 225, no. 1. – doi: 10.1016/j.ress.2022.108636
- Vaswani, A., Shazeer, N., Parmar, N., et al. Attention Is All You Need // Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017). – Long Beach, CA, USA, 2017. – P. 5998–6008. – doi: 10.48550/arhiv1706.03762
- Ma, Q., Zhang, M., Xu, Y., et al. Remaining Useful Life Estimation for Turbofan Engine with Transformer-based Deep Architecture // Proceedings of the 26th International Conference on Automation and Computing (ICAC). – Portsmouth, United Kingdom, 2021. – doi: 10.23919/ICAC50006.2021.9594150
- Zhang, Z., Song, W., Li, Q. Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction // IEEE Transactions on Instrumentation and Measurement. – 2022. – Vol. 71. – doi: 10.1109/TIM.2022.3160561
- Chadha, G.S., Shah, S.R.B., Schwung, A., Ding, S.X. Shared Temporal Attention Transformer for Remaining Useful Lifetime Estimation // IEEE Access. – 2022. – Vol. 10. – doi: 10.1109/ACCESS.2022.3187702
- Fan, Z., Li, W., Chang, K.-C. A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine Remaining Useful Life Prediction // Sensors. – 2024. – Vol. 24, no. 3. – doi: 10.3390/s24030824
- Xiang, F., Zhang, Y., Zhang, S., et al. Bayesian Gated-Transformer Model for Risk-Aware Prediction of Aero-Engine Remaining Useful Life // Expert System with Applications. – 2024. – Vol. 238, no. 1. – doi: 10.1016/j.eswa.2023.121859
- Fan, Z., Li, W., Chang, K.-C. A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation // Mathematics. – 2023. – Vol. 11, iss. 24. – DOI: 103390/math11244972
- Zheng, S., Ristovski, K., Farahat, A., Gupta, C. Long Short-Term Memory Network for Remaining Useful Life Estimation // Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). – Dallas, TX, USA, 2017. – P. 88–95. – doi: 10.1109/ICPHM.2017.7998311
- Mo, H., Lucca, F., Malacarne, J., Iacca, G. Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life Prediction // Proceedings of the 27th Conference of Open Innovations Association (FRUCT). – Trento, Italy, 2020. – P. 164–171. – doi: 10.23919/FRUCT49677.2020.9111058
- Mo, Y., Wu, Q., Li, X., Huang, B. Remaining Useful Life Estimation via Transformer Encoder Enhanced by a Gated Convolutional Unit // Journal of Intelligent Manufacturing. – 2021. – Vol. 32. – P. 1997–2006. – doi: 10.1007/s10845-021-01750-x
- Siraskar, R., Kumar, S., Patil, S., et al. Reinforcement Learning for Predictive Maintenance: A Systematic Technical Review // Artificial Intelligence Review. – 2023. – Vol. 56. – P. 12 885–12 947. – doi: 10.1007/s10462-023-10468-6
- Hu, Y., Miao, X., Zhang, J., et al. Reinforcement Learning Driven Maintenance Strategy: A Novel Solution for Long-term Aircraft Maintenance Decision Optimization // Computers & Industrial Engineering. – 2021. – Vol. 153. – doi: 10.1006/j.cie.2020.107056
- Ribeiro, J., Andrade, P., Carvalho, M., et al. Playful Probes for Design Interaction with Machine Learning: A Tool for Aircraft Condition–based Maintenance Planning and Visualisation // Mathematics. – 2022. – Vol. 10, no. 9. – doi: 10.3390/math.10091604
- Silva, C., Andrade, P., Ribeiro, B., Santos, B.F. Adaptive Reinforcement Learning for Task Scheduling in Aircraft Maintenance // Scientific Reports. – 2023. – Vol. 13 (1). – doi: 10.1038/s41598-023-41169-3
- Dangut, M.D., Jennions, I.K., King, S., Skaf, Z. Application of Deep Reinforcement Learning for Extremely Rare Failure Prediction in Aircraft Maintenance // Mechanical Systems and Signal Processing. – 2022. – Vol. 171, no. 8. – doi: 10.1016/j.ymssp.2022.108873
- Pater, I., Reijns, A., Mitici, M. Alarm-based Predictive Maintenance Scheduling for Aircraft Engines with Imperfect Remaining Useful Life Prognostics // Reliability Engineering and System Safety. – 2022. – Vol. 221. – doi: 10.1016/j.ress.2022.108341
- Fink, O., Wang, Q., Svensén, M., et al. Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications // Engineering Applications and Artificial Intelligence. – 2020. – Vol. 92, no. 033. – doi: 10.1016/j.engappai.2020.103678
- Lee, J., Mitici, M. Deep Reinforcement Learning for Predictive Aircraft Maintenance Using Probabilistic Forecast of Remaining Useful Life // Reliability and System Safety. – 2023. – Vol. 230, no. 1. – doi: 10.1016/j.ress.2022.108908
- Srivastava, N., Hinton, G., Sutskever, A., et al. A Simple Way to Prevent Neural Networks from Overfitting // Journal of Machine Learning Research. – 2014. – Vol. 15. – doi: 10.5555/2627435.2670313
- Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. Soft Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor // Proceedings of the 35th International Conference on Machine Learning (ICML). – Stockholm, Sweden, 2018. – Vol. 5. – P. 2976–2989.
Supplementary files



