Prospective Approaches to Predicting the Remaining Useful Life of Aircraft Engines
- Authors: Kulida E.L1, Lebedev V.G1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 6 (2024)
- Pages: 3-19
- Section: Surveys
- URL: https://journals.rcsi.science/1819-3161/article/view/286798
- ID: 286798
Cite item
Full Text
Abstract
About the authors
E. L Kulida
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: elena-kulida@yandex.ru
Moscow, Russia
V. G Lebedev
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: lebedev-valentin@yandex.ru
Moscow, Russia
References
- Fentaye, D., Zaccaria, V., Kyprianidis, K. Aircraft Engine Performance Monitoring and Diagnostics Based on Deep Convolutional Neural Networks // Machines. – 2021. – Vol. 9, no. 12. – Art. no. 337. – doi: 10.3390/machines9120337
- Kordestani, M., Orchard, M.E., Khorasani, K., Saif, M. An Overview of the State of the Art in Aircraft Prognostic and Health Management Strategies // IEEE Transaction on Instrumentation and Measurement. – 2023. – Vol. 72. – P. 1–15. – doi: 10.1109/TIM.2023.3236342
- Upadhyay, R., Amhia, H. LSTM-Based Approach for Remaining Useful Life Prediction of Air Craft Engines // ITM Web of Conferences. – 2023. – Vol. 57. – Art. no. 03004. – doi: 10.1051/itmconf/20235703004
- Stanton, I., Munir, K., Ikram, A., El-Bakry, M. Predictive Maintenance Analytics and Implementation for Aircraft: Challenges and Opportunities // Systems Engineering. – 2023. – Vol. 26, iss. 2. – Р. 216–237. – doi: 10.1002/sys.21651
- Кулида Е.Л., Лебедев В.Г. Прогнозирование технического обслуживания авиационных двигателей на основе глубокого обучения // Материалы XIV Всероссийского совещания по проблемам управления (ВСПУ-2024). – Москва, 2024. – С. 2502–2506.
- Сай В.К., Щербаков М.В. Прогнозирование отказов сложных многообъектных систем на основе комбинации нейросетей: пути повышения точности прогнозирования // Прикаспийский журнал: управление и высокие технологии. – 2020 – № 1 (49). – С. 49–60. – doi: 10.21672/2074–1707.2020.49.4.049–060
- Scott, M.J., Verhagen, W.J.C., Bieber, M.T., Marzocca, P. A Systematic Literature Review of Predictive Maintenance for Defence Fixed–Wing Aircraft Sustainment and Operations // Sensors. – 2022. – Vol. 22, no. 18. – Art. no. 7070. – doi: 10.3390/s22187070
- Khalid, S., Song, J., Azad, M.M. A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management // Mathematics. – 2023. – Vol. 11, no. 18. – Art. no. 3837. – doi: 10.3390/math11183837
- Naderi, E., Meskin N., Khorasani, K. Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model–based Approach // J. Eng. Gas Turbines Power. – 2012. – Vol. 13, no. 1. – doi: 10.1115/GT2010-23442
- Amirkhani, S., Tootchi, A., Chaibakhsh, A. Fault Detection and Isolation of Gas Turbine Using Series–parallel NARX Model // ISA Transactions. – 2022. – Vol. 120. – P. 205–221. – doi: 10.1016/j.isatra.2021.03.019
- Gharoun, H., Keramati, A., Nasiri, M., Azadeh, A. An Integrated Approach for Aircraft Turbofan Engine Fault Detection Based on Data Mining Techniques // Expert system. – 2021. – Vol. 36, no. 4. – doi: 10.1111/exsy.12370
- Gharoun, H., Hamid, M., Ghaderi, S.F., Nasiri, M. Anomaly Detection via Data Techniques for Aircraft Engine Operation Monitoring // Proceedings of 4th International Industrial Engineering Conference (IIEC 2018). – Tehran, Iran, 2018. – P. 1–15.
- Garcia, C.E., Camana, M.R., Koo, I. Machine Learning–based Scheme for Multi-class Fault Detection in Turbine Engine Disks // ICT Express. – 2021. – Vol. 7, iss. 1. – P. 15–22. – doi: 10.1016/j.icte.2021.01.009
- Li, Z, Goebel, K., Wu, D. Degradation Modeling and Remaining Useful Life Prediction of Aircraft Engines Using Ensemble Learning // Journal of Engineering for Gas Turbines and Power. – 2018. – Vol. 141, no. 4. – doi: 10.1115/1.4041674
- Celikmih, K., Inan, O., Uguz, H., et al. Failure Prediction of Aircraft Equipment Using Machine Learning with a Hybrid Data Preparation Method // Scientific Programming. – 2020. – Vol. 10. – doi: 10.1155/2020/8616039.
- Costa, N., Sánchez, L. Variational Encoding Approach for Interpretable Assessment of Remaining Useful Life Estimation // Reliability Engineering and System Safety. – 2022. – Vol. 222, no. 1. – doi: 10.1016/j.ress.2022.108353
- Abdullah, T.A.A., Zahid, M.S.M., Turki, A.F., et al. Sig-LIME: a Signal-Based Enhancement of LIME Explanation Technique // IEEE Access. – 2024. – Vol. 12. – P. 52641-52658. – doi: 10.1109/ACCESS.2024.3384277
- Gao, J., Wang, Y., Sun, Z. An Interpretable RUL Prediction Method of Aircraft Engines Under Complex Operating Conditions Using Spatio–temporal Features // Measurement Science and Technology. – 2024. – Vol. 35, no. 7. – doi: 10.1088/1361–6501/ad3b2c
- Chao, M.A., Kulkarni, C., Goebel, K., Fink, O. Fusing Physics-based and Deep Learning Models for Prognostics // Reliability Engineering and System Safety. – 2022. – Vol. 217, no. 3. – doi: 10.1016/ress.2021.107961
- Adhikari, P., Rao, H.G., Buderath, M. Machine Learning Based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance // Proceedings of the 10th International Symposium on NDT in Aerospace. – Dresden, Germany, 2018. – P. 24–26.
- Graves, A., Schmidhuber, J. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures // Neural Networks. – 2005. – Vol. 18, no. 5–6. – P. 602–610. – doi: 10.1016/j.neunet.2005.06.042
- Graves, A., Jaitly, N., Mohamed, A.R. Hybrid Speech Recognition with Deep Bidirectional LSTM // Proceedings of 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. – Olomouc, Czech Republic, 2014. – P. 273–278. – doi: 10.1109/ASRU.2013.6707742
- Kefalas, M., Baratchi, M., Apostolidis, A., et al. Automated Machine Learning for Remaining Useful Life Estimation of Aircraft Engines // Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM). – Detroit, USA, 2021. – doi: 10.1109/ICPHM51084.2021.9486549
- Liu, L., Song, X., Zhou, Z. Aircraft Engine Remaining Useful Life Estimation Via a Double Attention-based Data-driven // Reliability Engineering and System Safety. – 2022. – Vol. 221, no. 3. – doi: 10.1016/j.ress2022.108330
- Сай В.К. Глубокие нейронные сети для предсказательного технического обслуживания // Моделирование, оптимизация и информационные технологии. – 2019. – Т. 7, № 4. – doi: 10.26102/2310-6018/2019.27.4.011
- Xia, J, Feng, Y., Lu, C., et al. LSTM-Based Multi-layer Self-attention Method for Remaining Useful Life Estimation of Mechanical Systems // Engineering Failure Analysis. – 2021. – Vol. 125, no. 12. – doi: 10.1016/j.engfainal.2021.105385
- Dangut, M.D., Skaf, Z., Jennions, I.K. Rare Failure Prediction Using an Integrated Auto–encoder and Bidirectional Gated Recurrent Unit Network // IFAC-PapersOnLine. – 2020. – Vol. 53, iss. 4. – P. 276–282.
- Dangut, M.D., Jennions, I.K., King, S., Skaf, Z. A Rare Failure Detection Model for Aircraft Predictive Maintenance Using a Deep Hybrid Learning Approach // Neural Computing and Applications. – 2023. – Vol. 35, no. 4. – P. 2991–3009. – doi: 10.1007/s00521-022-07167-8
- Сыпало, К.И., Пономарев, А.К., Ахатов, И.Ш. Перспективные технологии для авиационной промышленности: Аналитический обзор. – М.: НАУКА, 2017. – 463 с.
- Badea, V.E., Zamfiroiu, A., Boncea, R. Big Data in the Aerospace Industry // Informatica Economica. – 2018. – Vol. 22, no. 1. – P. 17–24. – doi: 10.12948/issn14531305/1.2018.02
- Zhao, Y., Wang, Y. Remaining Useful Life Prediction for Multi-sensor Systems Using a Novel End-to-End Deep-learning Method // Measurement. – 2021. – Vol. 182, no. 163. – doi: 10.1016/j.measurement.2021.109685
- Frederick, D.K., DeCastro, J.A., Litt, J.S. User's Guide for the Commercial Modular Aero-propulsion System Simulation (C-MAPSS). Report no. NASA/TM-2007-215026. – Cleveland: National Aeronautics and Space Administration, 2007. – 47 p.
- Saxena, A., Goebel, K., Simon, D., Eklund, N. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation // Proceedings of International Conference on Prognostics and Health Management. – Denver, USA, 2008. – doi: 10.1109/PHM.2008.4711414
- Song, Y., Bliek, L., Xia, T., Zhang, Y. A Temporal Pyramid Pooling-Based Convolutional Neural Network for Remaining Useful Life Prediction // Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021). – P. 603–609. – doi: 10.3850/978–981-18-2016-8_478-cd
- Chao, M.A., Kulkarni, C., Goebel, K., Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics // Data. – 2021. – Vol. 6 (1), no. 5. – doi: 10.3390/data6010005
- Azyus, A.F. Determining the Method of Predictive Maintenance for Aircraft Engine Using Machine Learning // Journal of Computer Science and Technology Studies. – 2022. – Vol. 4, no. 1. – doi: 10.32996/jcsts.2022.4.1.1
- Hasib, A.A., Rahman, A., Khabir, M., Shawon, M.T.R. An Interpretable Systematic Review of Machine Learning Models for Predictive Maintenance of Aircraft Engine // arXiv. – 2023. – arXiv:2309.13310v1. – DOI: https://doi.org/10.48550/arXiv.2309.13310
- Liu, T., Bao, J., Wang, J., Wang, J. Deep Learning for Industrial Image: Challenges, Methods for Enriching the Sample Space and Restricting the Hypothesis Space, and Possible Issue // International Journal of Computer Integrated Manufacturing. – 2022. – Vol. 35, iss. 10–11. – P. 1077–1106. – doi: 10.1080/0951192X.2021.1901319
- Hinton, G.E., Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks // Science. – 2006. – Vol. 313. – P. 504–507. – doi: 10.1126/science.1127647
- Fu, S., Zhong, S., Lin, L., Zhao, M. A Re-optimized Deep Auto-encoder for Gas Turbine Unsupervised Anomaly Detection // Engineering Applications of Artificial Intelligence. – 2021. – Vol. 101, no. 12. – doi: 10.1016/j.engappi.2021.104199
- Babu, G.S., Zhao, P., Li, X. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life // Proceedings of the International Conference on Database Systems for Advanced Applications (DASFAA). – Dallas, USA, 2016. – Vol. 9642. – P. 214–228. – doi: 10.1007/978-3-319-32025-0_14
- Li, X., Ding, Q., Sun, J.Q. Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks // Reliability Engineering and System Safety. – 2018. – Vol. 172, no. 1-2. – doi: 10.1016/j.ress.2017.11.021
- Li, H., Zhao, W., Zhang, Y., Zio, E. Remaining Useful Life Prediction Using Multiscale Deep Convolutional Neural Network // Applied Soft Computing. – 2020. – Vol. 89. – doi: 10.1016/j.asoc.2020.106113
- Абдуракипов С.С., Бутаков Е.Б. Сравнительный анализ алгоритмов машинного обучения для определения предотказных и аварийных состояний авиадвигателей // Автометрия. – 2020. – Т. 56, № 6. – С. 34–48. – doi: 10.15372/AUT20200605
- Schuster, M., Paliwal, K.K. Bidirectional Recurrent Neural Networks // IEEE Transactions on Signal Processing. – 1997. – Vol. 45, no. 11. – P. 2673–2681. – doi: 10.1109/78.650093
- Hu, K., Cheng, Y., Wu, J., et al. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine // IEEE Transactions on Cybernetics. – 2021. – Vol. 53, no. 4. – P. 2531–2543. – doi: 10.1109/TCYB.2021.3124838
- Hochreiter, S., Schmidhuber, J. Long Short-term Memory // Neural Computation. – 1997. – Vol. 9, no. 8. – P. 1735–1780. – doi: 10.1162/neco.1997.9.8.1735
- Wang, J., Wen, G., Yang, S., Liu, Y. Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network // Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing). -Chongqing, China, 2018. – P. 1037–1042. – doi: 10.1109/PHM-Chongqing.2018.00184
- Khan, K., Sohaib, M., Rashid, A., et al. Recent Trends and Challenges in Predictive Maintenance of Aircraft’s Engine and Hydraulic System // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2021. – Vol. 43. – P. 1–17. – doi: 10.1007/s40430-021-03121-2
- Wu, Q., Ding, K., Huang, B. Approach for Fault Prognosis Using Recurrent Neural Network // Journal of Intelligent Manufacturing. – 2020. – Vol. 31, no. 3. – P. 1621–1633. – doi: 10.1007/s10845-018-1428-5
- Peng, C., Chen, Y., Chen, Q., et al. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion // Sensors. – 2021. – Vol. 21, no. 2. – doi: 10.3390/s21020418
- da Rosa, T.G., de Melani, A.H.A., Pereira, F.H., et al. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis // Sensors. – 2022. – Vol. 22, no. 24. – doi: 10.3390/s22249738
- Peng, C., Wu, J., Wang, Q. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference // Entropy. – 2022. – Vol. 24, no. 12. – doi: 10.3390/e24121818
- Wang, X., Huang, T., Zhu, K., Zhao, X. LSTM-Based Broad Learning System for Remaining Useful Life Prediction // Mathematics. – 2022. – Vol. 10, no. 12. – doi: 10.3390/math10122066
- Azyus, A.F., Wijaya, S.K., Naved, M. Determining RUL Predictive Maintenance on Aircraft Engines Using GRU // Journal of Mechanical, Civil and Industrial Engineering. – 2022. – Vol. 3, no. 3. – P. 79–84. – doi: 10.32996/jmcie.2022.3.3.10
- Boujamza, A., Elhaq, S.L. Attention-Based LSTM for Remaining Useful Life Estimation of Aircraft Engines // Advances in Control and Optimization of Dynamical Systems. – 2022. – Vol. 55, iss. 12. – P. 450–455. – doi: 10.1016/j.ifacol.2022.07.353
- Jiang, Y., Li, C., Yang, Z., et al. Remaining Useful Life Estimation Combining Two-step Maximal Information Coefficient and Temporal Convolutional Network with Attention Mechanism // IEEE Access. – 2021. – Vol. 9. – P. 16 323–16 336. – doi: 10.1109/ACCESS.2021.3052305
- Xia, J., Feng, Y., Teng, D., et al. Distance Self–attention Network Method for Remaining Useful Life Estimation of Aeroengine with Parallel Computing // Reliability Engineering and System Safety. – 2022. – Vol. 225, no. 1. – doi: 10.1016/j.ress.2022.108636
- Vaswani, A., Shazeer, N., Parmar, N., et al. Attention Is All You Need // Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017). – Long Beach, CA, USA, 2017. – P. 5998–6008. – doi: 10.48550/arhiv1706.03762
- Ma, Q., Zhang, M., Xu, Y., et al. Remaining Useful Life Estimation for Turbofan Engine with Transformer-based Deep Architecture // Proceedings of the 26th International Conference on Automation and Computing (ICAC). – Portsmouth, United Kingdom, 2021. – doi: 10.23919/ICAC50006.2021.9594150
- Zhang, Z., Song, W., Li, Q. Dual-Aspect Self-Attention Based on Transformer for Remaining Useful Life Prediction // IEEE Transactions on Instrumentation and Measurement. – 2022. – Vol. 71. – doi: 10.1109/TIM.2022.3160561
- Chadha, G.S., Shah, S.R.B., Schwung, A., Ding, S.X. Shared Temporal Attention Transformer for Remaining Useful Lifetime Estimation // IEEE Access. – 2022. – Vol. 10. – doi: 10.1109/ACCESS.2022.3187702
- Fan, Z., Li, W., Chang, K.-C. A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine Remaining Useful Life Prediction // Sensors. – 2024. – Vol. 24, no. 3. – doi: 10.3390/s24030824
- Xiang, F., Zhang, Y., Zhang, S., et al. Bayesian Gated-Transformer Model for Risk-Aware Prediction of Aero-Engine Remaining Useful Life // Expert System with Applications. – 2024. – Vol. 238, no. 1. – doi: 10.1016/j.eswa.2023.121859
- Fan, Z., Li, W., Chang, K.-C. A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation // Mathematics. – 2023. – Vol. 11, iss. 24. – DOI: 103390/math11244972
- Zheng, S., Ristovski, K., Farahat, A., Gupta, C. Long Short-Term Memory Network for Remaining Useful Life Estimation // Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). – Dallas, TX, USA, 2017. – P. 88–95. – doi: 10.1109/ICPHM.2017.7998311
- Mo, H., Lucca, F., Malacarne, J., Iacca, G. Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life Prediction // Proceedings of the 27th Conference of Open Innovations Association (FRUCT). – Trento, Italy, 2020. – P. 164–171. – doi: 10.23919/FRUCT49677.2020.9111058
- Mo, Y., Wu, Q., Li, X., Huang, B. Remaining Useful Life Estimation via Transformer Encoder Enhanced by a Gated Convolutional Unit // Journal of Intelligent Manufacturing. – 2021. – Vol. 32. – P. 1997–2006. – doi: 10.1007/s10845-021-01750-x
- Siraskar, R., Kumar, S., Patil, S., et al. Reinforcement Learning for Predictive Maintenance: A Systematic Technical Review // Artificial Intelligence Review. – 2023. – Vol. 56. – P. 12 885–12 947. – doi: 10.1007/s10462-023-10468-6
- Hu, Y., Miao, X., Zhang, J., et al. Reinforcement Learning Driven Maintenance Strategy: A Novel Solution for Long-term Aircraft Maintenance Decision Optimization // Computers & Industrial Engineering. – 2021. – Vol. 153. – doi: 10.1006/j.cie.2020.107056
- Ribeiro, J., Andrade, P., Carvalho, M., et al. Playful Probes for Design Interaction with Machine Learning: A Tool for Aircraft Condition–based Maintenance Planning and Visualisation // Mathematics. – 2022. – Vol. 10, no. 9. – doi: 10.3390/math.10091604
- Silva, C., Andrade, P., Ribeiro, B., Santos, B.F. Adaptive Reinforcement Learning for Task Scheduling in Aircraft Maintenance // Scientific Reports. – 2023. – Vol. 13 (1). – doi: 10.1038/s41598-023-41169-3
- Dangut, M.D., Jennions, I.K., King, S., Skaf, Z. Application of Deep Reinforcement Learning for Extremely Rare Failure Prediction in Aircraft Maintenance // Mechanical Systems and Signal Processing. – 2022. – Vol. 171, no. 8. – doi: 10.1016/j.ymssp.2022.108873
- Pater, I., Reijns, A., Mitici, M. Alarm-based Predictive Maintenance Scheduling for Aircraft Engines with Imperfect Remaining Useful Life Prognostics // Reliability Engineering and System Safety. – 2022. – Vol. 221. – doi: 10.1016/j.ress.2022.108341
- Fink, O., Wang, Q., Svensén, M., et al. Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications // Engineering Applications and Artificial Intelligence. – 2020. – Vol. 92, no. 033. – doi: 10.1016/j.engappai.2020.103678
- Lee, J., Mitici, M. Deep Reinforcement Learning for Predictive Aircraft Maintenance Using Probabilistic Forecast of Remaining Useful Life // Reliability and System Safety. – 2023. – Vol. 230, no. 1. – doi: 10.1016/j.ress.2022.108908
- Srivastava, N., Hinton, G., Sutskever, A., et al. A Simple Way to Prevent Neural Networks from Overfitting // Journal of Machine Learning Research. – 2014. – Vol. 15. – doi: 10.5555/2627435.2670313
- Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. Soft Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor // Proceedings of the 35th International Conference on Machine Learning (ICML). – Stockholm, Sweden, 2018. – Vol. 5. – P. 2976–2989.
Supplementary files
