Building a Defender’s 3D Program Path in an ADT Game with Incomplete A Priori Target Information

Cover Page

Cite item

Abstract

This paper is devoted to an Attacker–Defender–Target (ADT) game in the 3D space. The Target makes flat circumferential movements with a constant velocity. The Attacker moves uniformly and rectilinearly from an arbitrary point in the upper hemisphere. The distinctive feature of the problem statement is that the Target has an onboard mobile Defender. The Defender is intended to intercept the Attacker’s possible paths dangerous to the Target (in the pointwise meeting sense). This task is complicated since the Target and Defender do not see the Attacker during the movements. They know only the initial bearing; the current bearing and the initial and current distances to the Attacker remain uncertain. For this reason, the Target and Defender are assumed to move along a program path.

About the authors

A. P Potapov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: potapov@ipu.ru
Moscow, Russia

E. Ya Rubinovich

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: rubinvch@gmail.com
Moscow, Russia

References

  1. Ivanov, M.N., Maslov, E.P. On One Problem of Deviation // Automation and Remote Control. – 1984. – Vol. 45, no. 8. – P. 1008–1014.
  2. Zheleznov, V.S., Kryakovskii B.S., Maslov, E.P. On a Catch Problem // Automation and Remote Control. – 1996. – Vol. 57, no. 8. – P. 1072–1078.
  3. Rubinovich, E.Ya. Missile-Target-Defender Problem with Incomplete a Priori Information // Dynamic Games and Applications. – 2019. – Vol. 9. – P. 851–857.
  4. Boyell, R.L. Defending a Moving Target against Missile or Torpedo Attack // IEEE Trans. Aerosp. Electron. Syst. – 1976. – Vol. AES-12, no. 4. – P. 582–586.
  5. Boyell, R.L. Counterweapon Aiming for Defence of a Moving Target // IEEE Trans. Aerosp. Electron. Syst. – 1980. – Vol. AES-16, no. 3. – P. 402–408.
  6. Shneydor, N.A. Comments on “Defending a Moving Target against Missile or Torpedo Attack” // IEEE Trans. Aerosp. Electron. Syst. – 1977. – Vol. AES-13, no. 3. – P. 321–321.
  7. Garcia, E., Casbeer, D.W., Pham, K. and Pachter, M. Cooperative Aircraft Defense from an Attacking Missile // Proc. of the 53th IEEE Conference on Decision and Control (CDC). – Los Angeles, USA, 2014. – P. 2926–2931.
  8. Pachter, M., Garcia, M., and Casbeer, D.W. Active Target Defense Differential Game // Proceedings of 52nd Annual Allerton Conference on Communication, Control, and Computing. – Allerton, 2014. – P. 46–53.
  9. Perelman, A., Shima, T., and Rusnak, I. Cooperative Differential Games Strategies for Active Aircraft Protection from a Homing Missile // Journal of Guidance, Control, and Dynamics. – 2011. – Vol. 34, no. 3. – P. 761–773.
  10. Rusnak, I., Weiss, H., and Hexner, G. Guidance Laws in Target-Missile-Defender Scenario with an Aggressive Defender // Proc. of the 18th IFAC World Congress. – Milano, Italy, 2011. – P. 9349–9354.
  11. Rusnak, I. The Lady, the Bandits and the Body-Guards – a Two Team Dynamic Game // Proc. of the 16th IFAC World Congress. – Prague, Czech Republic, 2005. – P. 441–446.
  12. Shima, T. Optimal Cooperative Pursuit and Evasion Strategies against a Homing Missile // AIAA Journal of Guidance, Control, and Dynamics. – 2011. – Vol. 34, no 2. – P. 414–425.
  13. Yamasaki, T., and Balakrishnan, S.N. Terminal Intercept Guidance and Autopilot for Aircraft Defense against an Attacking Missile via 3D Sliding Mode Approach // Proc. of the 2012 American Control Conference (ACC). – Montreal, 2012. – P. 4631–4636.
  14. Yamasaki, T., Balakrishnan, S.N., and Takano, H. Modified Command to Line-of-Sight Intercept Guidance for Aircraft Defense // Journal of Guidance, Control, and Dynamics. – 2013. – Vol. 36, no. 3. – P. 898–902.
  15. Liu, Y., Qi, N., and Shan, J. Cooperative Interception with Double-Line-of-Sight-Measuring // Proceedings of the AIAAGuidance, Navigation, and Control (GNC) Conference. – Reston: American Institute of Aeronautics and Astronautics, 2013. – Art. no. AIAA 2013-5112.
  16. Qi, N., Sun, Q., Zhao, J. Evasion and Pursuit Guidance Law against Defended Target // Chinese Journal of Aeronautics. – 2017. – Vol. 30, no. 6. – P. 1958–1973.
  17. Weissyand, M., Shimazand, T., Rusnak, I. Minimum Effort Intercept and Evasion Guidance Algorithms for Active Aircraft Defense // Journal of Guidance, Control, and Dynamics. – 2016. – Vol. 39, no. 10. – P. 2297–2311.
  18. Garcia, E., Casbeer, D.W., Pachter, M. Active Target Defense Differential Game with a Fast Defender // IET Control Theory and Applications. – 2017. – Vol.11, no. 17. – P. 2985–2993.
  19. Garcia, E., Casbeer, D.W., Pachter, M. The Complete Differential Game of Active Target Defense // Journal of Optimization Theory and Applications. – 2021. – Vol. 191. – P. 1–25.
  20. Gong, X., Chen, W., Chen, Z. Intelligent Game Strategies in Target-Missile-Defender Engagement Using Curriculum-Based Deep Reinforcement Learning // Aerospace. – 2023. – Vol. 10, no. 2. – Art. no. 133.
  21. Галяев А.А., Самохин А.С., Самохина М.А. Моделирование отсрочки поимки цели в ADT-игре с использованием одного или двух защитников // Проблемы управления. – 2024. – № 2. – С. 83–94.
  22. Потапов А.П., Галяев А.А. Противодействие алгоритму наведения в игре трех игроков. // Мехатроника, автоматизация, управление. – 2024. – Т. 25, № 11. – С. 575–584.
  23. Маркеев А.П. Теоретическая механика: Учебник для университетов. – М.: ЧеРо, 1999. – 572 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).