Parametric Optimization of a Nonlinear Model in Tumor Cell Growth Identification
- Authors: Afanas’ev V.N1, Frolova N.A2
-
Affiliations:
- HSE Tikhonov Moscow Institute of Electronics and Mathematics
- Lomonosov Moscow State University
- Issue: No 4 (2023)
- Pages: 3-13
- Section: Analysis and Design of Control Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/286635
- DOI: https://doi.org/10.25728/pu.2023.4.1
- ID: 286635
Cite item
Full Text
Abstract
This paper presents an identification method for time-varying objects that involves mathematical models with parametric tuning. The deviation of object’s transients and its mathematical model are estimated in terms of a quadratic performance criterion; the parametric tuning of the object model is a constrained optimization problem. The parametric optimization algorithm is developed using the vector projection property in a Krein space and the second Lyapunov method for a targeted change in the model parameters. The method is applied to estimate parameters in a tumor cell growth model. The nonlinear model describes the relationship between the populations of normal, immune, and tumor cells that can be measured in the presence of Gaussian white noise. Numerical simulation illustrates the design procedure and shows the effectiveness of this method.
About the authors
V. N Afanas’ev
HSE Tikhonov Moscow Institute of Electronics and Mathematics
Email: afanval@mail.ru
Moscow, Russia
N. A Frolova
Lomonosov Moscow State University
Email: matveeva.nataljja@physics.msu
Moscow, Russia
References
- Wensing, P.M., Kim, S., and Slotine, J.E. Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution // IEEE Robotics and Automation Letters. – 2017. – Vol. 3, no. 1. – P. 60–67.
- Brunton, S.L., Proctor, J.L., and Kutz, J.N. Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113, no. 15. – P. 3932–3937.
- Tabo, Z., Kalinda, C., Breuer, L., and Albrecht, C. Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach // Mathematics. – 2023. – Vol. 11, no. 12. – Art. no. 2609. – DOI: https://doi.org/10.3390/math11122609.
- Wu, L., Liu, F., Gu, H., and Wang, P. Adaptive Finite-Time Control of Stochastic Genetic Regulatory Networks with Time-Varying Delays // Mathematics. – 2022. – Vol. 10, no. 21. – Art. no. 4071. – DOI: https://doi.org/10.3390/math10214071.
- Жирабок А. Н., Зуев А. В., Сергиенко О. Ю., Шумский А. Е. Идентификация дефектов в нелинейных динамических системах и их датчиках на основе скользящих наблюдателей // Автоматика и телемеханика. – 2022. – № 2. – С. 63–89. [Zhirabok, A.N., Shumsky, A.E., Zuev, A.V., Sergiyenko, O. Identification of Faults in Nonlinear Dynamical Systems and Their Sensors Based on Sliding Mode Observers // Automation and Remote Control. – 2022. – Vol. 83, no. 2. – P. 214–236.]
- Бобцов А.А., Николаев Н.А., Оськина О.В., Низовцев С.И. Идентификация нестационарного параметра незашумленного синусоидального сигнала // Автоматика и телемеханика. – 2022. – № 7. – С. 137–151. [Bobtsov, A.A., Nikolaev, N.A., Oskina, O.V., Nizovtsev, S.I. Identification of Time-Varying Parameter of Noiseless Sinusoidal Signal // Automation and Remote Control. – 2022. – Vol. 83, no. 7. – P. 1123–1135.]
- Афанасьев В.Н., Каперко А.Ф., Кулагин В.П., Колюбин В.А. метод адаптивной фильтрации в задаче восстановления параметров космического излучения // Автоматика и телемеханика. – 2017. – № 3. – С. 15–33. [Afanas’ev, V.N., Kaperko, A.F., Kulagin, V.P., Kolyubin, V.A. Method of Adaptive filtering in the problem of restoring parameters of cosmic radiation. Automation and Remote Control. – 2017. – Vol. 78, no. 3. – P. 397–412.]
- Deng, X., Huang, Y., Xu, B., and Tao, L. Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control // Mathematics. – 2023. – Vol. 11, no. 12. – Art. no. 2732. – DOI: https://doi.org/10.3390/math11122732.
- Афанасьев В.Н. Управление нелинейными неопределенными динамическими объектами. – М.: ЛЕНАНД, 2015. – 224 с. [Afanas'ev, V.N. Upravlenie nelineinymi neopredelennymi dinamicheskimi ob"ektami. – M.: LENAND, 2015. – 224 s. (In Russian)]
- Isermann, R., Minchef, M. An Identification of Dynamic Systems. An Introduction with Applications. – Berlin, Heidelberg: Springer, 2011. – 705 p.
- Farza, M., Bouraoui, I., Menard, T., et al. Adaptive Observers for a Class of Uniformly Observable Systems with Nonlinear Parametrization and Sampled Outputs // Automatica. – 2014. – Vol. 50, no. 11. – Р. 2951–2960.
- Летов А.М. Динамика полета и управление. – М: Наука, 1969. – 360 с. [Letov, A.M. Dinamika poleta i upravlenie. – M: Nauka, 1969. – 360 s.]
- Петров Б.Н., Крутько П.Д. Алгоритмическое конструирование оптимальных регуляторов при неполной информации о состоянии объекта и возмущений // Изв. АН СССР. Техническая кибернетика. – 1972. – № 6. – С. 188–199. [Petrov, B.N., Krut'ko, P.D. Algoritmicheskoe konstruirovanie optimal'nyh re-gulyatorov pri nepolnoj informacii o sostoyanii ob"ekta i vozmushchenij // Izv. AN SSSR. Tekhnicheskaya kibernetika. – 1972. – No. 6. – P. 188–199. (In Russian)]
- Цыпкин Я.З. Адаптация и обучение в автоматических системах. – М.: Наука, 1968. – 400 с. [Cypkin, Ya.Z. Adaptaciya i obuchenie v avtomaticheskih sistemah. – M.: Nauka, 1968. – 400 s. (In Russian)]
- Zhang, Q. Adaptive Observer for Multiple-Input-Multiple-Output (MIMO) Linear Time Varying Systems // IEEE Trans. on Automatic Control. – 2002. – Vol. 47, no. 3. – P. 525–529.
- Toth, R., Willems, J., Heuberger, P., Van den Hof, P. The Behavioral Approach to Linear Parameter Varying Systems // IEEE Trans. Automatic Control. – 2011. – Vol. 56, no. 11. – P. 2499–2514.
- Hassibi, B., Sayed, A.H., and Kailath, T. Indefinite Quadratic Estimation and Control: A Unified Approach to H2 and Hinf Theories. – Philadelphia: SIAM, 1999. – 555 p.
- Iohvidov, I.S., Krein, M.G., Longer, H. Introduction to the Spectral Theory of Operators in Spaces with Indefinite Metric. – Berlin: Academie Verlag, 1982.
- Лакеев А.В., Русанов В.А., Козырев В.В. К реализации непрерывных квазилинейных систем с автономными операторами в гильбертовом пространстве // Проблемы управления. – 2013. – № 1. – С. 7–18. [Lakeev, A.V., Rusanov, V.A., Kozerev, V.A. On Realization of Quasi-Linear Systems Described by Stationary Differential Equations in Hilbert Space // Control Sciences. – 2013. – No. 1. – P. 7–18. (In Russian)]
- dePillis, L.G., Radunskaya, A.E. The Dynamics of an Optimally Controlled Tumor Model: A Case Study // Mathematical and Computer Modelling. – 2003. – Vol. 37, no. 11. – P. 1221–1244.
- Itik, M., Salamci, M.U., Banks, S.P. Optimal Control of Drug Therapy in Cancer Treatment // Nonlinear Analysis. – 2009. – Vol. 71. – Р. 1473–1486.
- Kadiri, M., Louaked, M., and Trabelsi, S. Optimal Control and Parameters Identification for the Cahn–Hilliard Equations Modeling Tumor Growth // Mathematics. – 2023. – Vol. 11., no. 7. – Art. no. 1607. – DOI: https://doi.org/10.3390/math11071607.
- Batmani, Y., Khaloozadech, H. Optimal Chemotherapy in Cancer Treatment: State Dependent Riccati Equation Control and Extended Kalman Filter // Optimal Control Applications and Methods. – 2012. – Vol. 34. – Р. 562–577.
- Babaei, N., Salamci, M.U. Personalized Drug Administration for Cancer Treatment Using Model Reference Adaptive Control // Journal of Theoretical Biology. – 2015. – Vol. 371. – P. 24–44.
- Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическое моделирование в биофизике. Монография. – М.: Наука, 1975. – 344 с. [Romanovskij, Yu.M., Stepanova, N.V., Chernavskij, D.S. Matematicheskoe modelirovanie v biofizike. Monografiya. – M.: Nauka, 1975. – 344 s. (In Russian)]
Supplementary files



