An Adaptive Aiding Algorithm for Pedestrian Navigation

Cover Page

Cite item

Full Text

Abstract

This paper presents a novel aiding algorithm for pedestrian navigation using foot-mounted inertial measurement units (IMUs). Autonomous pedestrian navigation with foot–mounted IMUs is based on the integration of simplified navigation equations and the correction of the navigational solution with zero velocity. Additional aiding algorithms are needed in the absence of external information such as GNSS or Wi-Fi and Bluetooth signals. There are two main groups of such algorithms: aiding based on information about bounded step length (two IMUs on both feet are required) and aiding based on straight-line path detection (heuristic drift elimination, HDE). The first method does not consider different accuracy of IMUs whereas the performance of the second one strongly depends on trajectory form. An attempt to eliminate the drawbacks of both algorithms is undertaken below. The novel algorithm is an adaptive version of the method based on bounded step length. Adaptivity is provided by tuning the measurement matrix for the less accurate IMU. The accuracy is assessed through the trajectory analysis based on information about straight-line motion. The novel algorithm is tested on experimental data. According to the testing results, this algorithm has better performance in the experiments with complicated trajectories. It can be used within an integrated pedestrian navigation system in the absence of external information.

About the authors

A. V Bragin

Moscow State University

Email: avb9676@yandex.ru
Moscow, Russia

References

  1. Tom Judd, C. A Personal Dead Reckoning Module // Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation. – Kansas City, 1997. – P. 47–51.
  2. Kourogi, M., Kurata, T. Personal Positioning Based on Walking Locomotion Analysis with Self-contained Sensors and a Wearable Camera // Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality. – Tokyo, 2003. – P. 103–112.
  3. Husen, M.N., Lee, S. Indoor Location Sensing with Invariant Wi-Fi Received Signal Strength Fingerprinting // Sensors. – 2016. – Vol. 16, no. 11. – Art. no. 1898.
  4. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P. LANDMARC: Indoor Location Sensing Using Active RFID // Wireless Networks. – 2004. – Vol. 10, no. 6. – P. 701–710.
  5. Elwell, J. Inertial Navigation for the Urban Warrior // Proceedings of the Digitalization of the Battlespace IV Conference. – Orlando, 1999. – P. 196–204.
  6. Brand, T.J., Phillips, R.E. Foot-to-Foot Range Measurement as an Aid to Personal Navigation // Proceedings of the 59th Annual Meeting of The Institute of Navigation and CIGTF 22nd Guidance Test Symposium. – Albuquerque, 2003. – P. 113–121.
  7. Болотин Ю.В., Брагин А.В., Гулевский Д.В. Исследование состоятельности расширенного фильтра Калмана в задаче навигации пешехода с БИНС, закрепленными на стопах // Гироскопия и Навигация. – 2021. – Т. 29, № 2. – С. 59–77. [Bolotin, Y.V., Bragin, A.V., Gulevskii, D.V. Studying the Сonsistency of Extended Kalman Filter in Pedestrian Navigation with Foot-Mounted SINS // Gyroscopy and Navigation. – 2021. – Vol. 12, no. 2. – P. 155–165.]
  8. Lee, J.H., Park, S.Y., Cho, S.Y., Park, C. Reduction of Heading Error Using Dual Foot-Mounted IMU // CEUR Workshop Proceedings. – 2019. – Vol. 2498. – P. 370–376.
  9. Skog, I., Nilsson, J.O., Zachariah, D., Handel, P. Fusing the Information from Two Navigation Systems Using an Upper Bound on Their Maximum Spatial Separation // Proceedings of IPIN. – Sydney, 2012. – P. 1–5.
  10. Zachariah, D., Skog, I., Jansson, M., Handel, P. Bayesian Estimation with Distance Bounds // IEEE Signal Processing Letters. – 2012. – Vol. 19, no. 12, pp. 880–883.
  11. Borenstein, J., Ojeda, L. Heuristic Drift Elimination for Personnel Tracking Systems // Journal of Navigation. – 2010. – Vol. 63. – P. 591–606.
  12. Abdulrahim, K., Hide, C., Moore, T., Hill, C. Aiding MEMS IMU with Building Heading for Indoor Pedestrian Navigation // Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS). – Kirkkonummi, 2010. – P. 1–6.
  13. Jimenez, A.R., Zampella, F., Seco, F.J., Prieto, J.C. Improved Heuristic Drift Elimination (iHDE) for Pedestrian Navigation in Complex Buildings // Proceedings of IPIN. – Guimaraes, 2011. – P. 1–8.
  14. Ju, H.J., Lee, M.S., Park, C.G., Lee, S. Advanced Heuristic Drift Elimination for Indoor Pedestrian Navigation // Proceedings of IPIN. – Busan, 2014. — P. 729–732.
  15. Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors // IEEE Computer Graphics and Applications. – 2005. – Vol. 25, no. 6. – P. 38–46.
  16. Ojeda, L., Borenstein, J. Non-GPS Navigation for Security Personnel and First Responders // Journal of Navigation. – 2007. – Vol. 60, no. 3. – P. 391–407.
  17. Вавилова Н.Б., Голован А.А., Парусников Н.А. Математические основы инерциальных навигационных систем. – М.: Изд-во Московского университета, 2020. – 164 с. [Vavilova, N.B., Golovan, A.A., Parusnikov, N.A. Mathematical Basis of Inertial Navigation Systems. – Moscow: Moscow State Univercity Press, 2020. – 164 s. (In Russian)]
  18. Skog, I., Handel, P., Nilsson, J., Rantakokko, J. Zero-Velocity Detection – An Algorithm Evaluation // IEEE Transactions on Biomedical Engineering. – 2010. – Vol. 57, no. 11. – P. 2657–2666.
  19. Tian, X., Chen, J., Han, Y. et al. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors // Sensors. – 2016. – Vol. 16, no. 10. – Art. no. 1578.
  20. Wagstaff, B., Kelly, J. LSTM-Based Zero-Velocity Detection for Robust Inertial Navigation // Proceedings of IPIN2018. – Nantes, 2018. – P. 1–8.
  21. Zhang, L., Chen, B., Li, H. and Liu, Y., Deep Neural Network-Based Adaptive Zero-Velocity Detection for Pedestrian Navigation System. // Electron. Lett. – 2022. – Vol. 58, iss. 1. – P. 28–31.
  22. Bolotin, Y., Bragin, A., Gartseev, I. Covariance Error Analysis for Pedestrian Dead Reckoning with Foot Mounted IMU // CEUR Workshop Proceedings. – 2019. – Vol. 2498. – P. 243–250.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».