Managing the Handling-Comfort Trade-Off in the Full Car Model by Active Suspension Control

Cover Page

Cite item

Full Text

Abstract

The effectiveness of a car suspension is usually assessed by the ability to provide maximum ride comfort and maintain continuous contact of the wheels with the road (road holding). This paper develops an active suspension control algorithm for the full car model (FCM) to improve its characteristics by active disturbance rejection control (ADRC). The ride comfort and road holding characteristics of the FCM suspension system are compared with those of the passive suspension. We propose an optimization algorithm for managing the comfort–handling trade-off using a single variable. This algorithm is based on forecasting the future values of the car chassis displacement and the roll angle depending on the dynamics of the ADRC controller on a given horizon. The simulation results confirm the effectiveness of the active suspension system with the proposed algorithm in improving the ride comfort and road holding characteristics.

About the authors

M. Alhelou

Bauman Moscow State Technical University

Email: muhammed.alhelou@gmail.com
Moscow, Russia

Y. Wassouf

Bauman Moscow State Technical University; KAMAZ Innovation Center

Email: vassufya@student.bmstu.ru
Moscow, Russia

M. V Korzhukov

KAMAZ Innovation Center

Email: KorzhukovMV@kamaz.ru
Moscow, Russia

E. S Lobusov

Bauman Moscow State Technical University

Email: evgeny.lobusov@yandex.ru
Moscow, Russia

V. V Serebrenny

Bauman Moscow State Technical University

Email: vsereb@bmstu.ru
Moscow, Russia

References

  1. Liu, H., Gao, H. and Li, P. Handbook of Vehicle Suspension Control System. – Institution of Engineering and Technology, 2013. – 424 p.
  2. Alhelou, M., Gavrilov A.I. Managing the Handling–Comfort Contradiction of a Quarter-Car System Using Kalman Filter // Transactions of the Institute of Measurement and Control. –2021. – No. 43(10). – P. 2292–2306.
  3. Alhelou, M., Gavrilov, A.I. Unscented Kalman-Filter to Manage the Handling-Comfort Trade-off of Quarter-of-Vehicle // Transactions of the Institute of Measurement and Control. – 2021. – Vol. 44, iss.1. – Art. id. 01423312211031774.
  4. Pepe, G., Roveri, N., Carcaterra, A. Experimenting Sensors Network for Innovative Optimal Control of Car Suspensions // Sensors. – 2019. – Vol. 19, iss. 14. – Art. no. 3062.
  5. Franz, D. Simulink Control Model of an Active Pneumatic Suspension System in Passenger Cars: Master of Science in Mechatronic Engineering Thesis. – Politechnico de Torino, 2019.
  6. Els, P.S., Theron, N.J., Uys, P.E., Thoresson, M.J. The Ride Comfort vs. Handling Compromise for Off-road Vehicles // Journal of Terramechanics. – 2007. – Vol. 44, no. 4. – P. 303–317.
  7. Shirahatti, A., Prasad, P., Panzade, P., Kulkarni, M. Optimal Design of Passenger Car Suspension for Ride and Road Holding // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2008. – No. 30. – P. 66–76.
  8. Darus, R., Sam Y.M. Modeling and Control Active Suspension System for a Full Car Model // Proceedings of 2009 5th International Colloquium on Signal Processing & Its Applications. – Kuala Lumpur, 2009. – P. 13–18.
  9. Gohrle, C., Wagner, A., Schindler, A., Sawodny, O. Active Suspension Controller Using MPC Based on a Full-car Model with Preview Information // Proceedings of 2012 American Control Conference (ACC). – Montreal, 2012. – P. 497–502.
  10. Nguyen, M.Q., Canale, M., Sename, O., Dugard, L. A Model Predictive Control Approach for Semi-active Suspension Control Problem of a Full Car // Proceedings of 2016 IEEE 55th Conference on Decision and Control (CDC). – Las Vegas, Nevada, 2016. – P. 721–726.
  11. Verschueren, R., Zanon, M., Quirynen, R., Diehl, M. Time-Optimal Race Car Driving Using an Online Exact Hessian Based Nonlinear MPC Algorithm // Proceedings of 2016 European Control Conference. – Aalborg, 2016. – P. 141–147.
  12. Rizvi, S.M.H., Abid, M., Khan, A.Q., et al. control of 8 Degrees of Freedom Vehicle Active Suspension System // Journal of King Saud University-Engineering Sciences. – 2018. – Vol. 30, no. 2. – P. 161–169.
  13. Van der Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., et al. Robust Control of an Electromagnetic Active Suspension System: Simulations and Measurements // Mechatronics. – 2013. – Vol. 23, no. 2 – P. 204–212.
  14. Wang, C., Deng, K., Zhao, W., et al. Robust Control for Active Suspension System under Steering Condition // Science China Technological Sciences. – 2017. – Vol. 60, no. 2. – P. 199–208.
  15. Alhelou, M., Wassouf, Y., and Gavrilov, A.I. Linear-Control vs. ADRC for Automatic Management of the Handling-Comfort Contradiction of a Quarter-Car System // International Journal of Heavy Vehicle Systems. – 2022. – Vol. 29, no. 2. – P. 145–162.
  16. Alhelou, M., Wassouf, Y., Serebrenny, V.V., et al. Managing the Handling-Comfort Trade-Off of a Quarter Car Suspension System using Active Disturbance Rejection Control and Vyshnegradsky Equation // Mekhatronika, Avtomatizatsiya, Upravlenie. – 2022. – Vol. 23, no. 7. – P. 367–375.
  17. Kumar, S., Medhavi, A., Kumar, R. Modeling of an Active Suspension System with Different Suspension Parameters for Full Vehicle// Indian Journal of Engineering and Materials Sciences (IJEMS). – 2021. – Vol. 28, no. 1. – P. 55–63.
  18. Алхелу М., Вассуф Я., Серебренный В.В. и др. Адаптивное управление компромиссом между управляемостью и комфортом в модели типа «четверть автомобиля» // Проблемы управления. – 2022. – № 2. – С 36–48. [Alhelou, M., Wassouf, Y., Serebrenny, V.V., et al. The Handling-Comfort Trade-Off in a Quarter-Car System: Automatic Adaptive Management via Active Disturbance Rejection Control // Control Sciences. – 2022. – No. 2. – P. 29–39. (In Russian)]
  19. Gao, Z., and Tian, G. Extended Active Disturbance Rejection Controller. US Patent no. 8180464 – 2012.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).