Real Data-Based Personalization of an Automatic Glucose Control System
- Authors: Mikhalskii A.I1, Novoseltseva J.A1, Shestakova T.P2
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Vladimirskii Moscow Regional Research Clinical Institute (MONIKI)
- Issue: No 1 (2023)
- Pages: 26-35
- Section: Control in Medical and Biological Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/286618
- DOI: https://doi.org/10.25728/pu.2023.1.3
- ID: 286618
Cite item
Full Text
Abstract
About the authors
A. I Mikhalskii
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: ipuran@yandex.ru
Moscow, Russia
J. A Novoseltseva
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: novoselc.janna@yandex.ru
Moscow, Russia
T. P Shestakova
Vladimirskii Moscow Regional Research Clinical Institute (MONIKI)
Email: t240169@yandex.ru
Moscow, Russia
References
- Amisha F., Malik P., Pathania M., Rathaur V.K. Overview of Artificial Intelligence in Medicine // J. Family Med. Prim. Care. – 2019. – Vol. 8, no. 7. – P. 2328–2331.
- Shortliffe, E.H. Computer-Based Medical Consultations: MYCIN. – New York: Elsevier, 1976. – 286 p.
- Глазкова Т.Г., Гурарий К.Н., Даниленко С.И. и др. Возможности применения ЭВМ для клинико-рентгенологической дифференциальной диагностики рака и доброкачественного поражения пищевода // Вестник радиологии и рентгенологии. – 1971. – № 2. – С. 15–21. [Glazkova, T.G., Gurarii, K.N., Danilenko, S.I., et al. Vozmozhnosti primeneniya EHVM dlya kliniko-rentgenologicheskoi differentsial'noi diagnostiki raka i dobrokachestvennogo porazheniya pishchevoda // Vestnik radiologii i rentgenologii. – 1971. – No. 2. – P. 15–21. (In Russian)]
- Захарова Л.М., Панкова Л.А., Петровский А.М., Шнейдерман М.В. Использование методов коллективной экспертизы для анализа характеристик сложных объектов на примере лекарственных препаратов // Автоматика и телемеханика. – 1980. – № 2. – С. 135–142. [Zakharova, L.M., Pankova, L.A., Petrovskii, A.M., Shneiderman, M.V. Ispol'zovanie metodov kollektivnoi ehkspertizy dlya analiza kharakteristik slozhnykh ob՚ektov na primere lekarstvennykh preparatov // Avtomatika i Telemekhanika. – 1980. – No. 2. – P. 135–142. (In Russian)]
- Захарова Л.М., Киселева Н.Е., Мучник И.Б. и др. Анализ развития гипертонической болезни по эмпирическим данным // Автоматика и телемеханика. – 1977. – № 9. – С. 114–122. [Zakharova, L.M., Kiseleva, N.E., Muchnik, I.B., et al. Analyzing the course of the hypertonic desease from empirical data // Avtomatika i Telemekhanika. – 1977. – No. 9. – P. 114–122. (In Russian)]
- Hamlet, P., Tremblay, J. Artificial Intelligence in Medicine // Metabolism. – 2017. – Vol. 69S. – P. S36–S40.
- Blyth, C.R. On Simpson’s Paradox and the Sure-Thing Principle // Journal of the American Statistical Association. – 1972. – Vol. 67. – P. 364–366.
- Дедов И.И., Шестакова М.В. Сахарный диабет типа 1: реалии и перспективы. – МИА, 2016. – 504 с. [Dedov, I.I., Shestakova, M.V. Sakharnyi diabet tipa 1: realii i perspektivy. – MIA, 2016. – 504 s.]
- Georga, E.I., Protopappas, V.C., Polyzos, D., Fotiadis , D.I. Evaluation of Short-Term Predictors of Glucose Concentration in Type 1 Diabetes Combining Feature Ranking with Regression Models // Med. Biol. Eng. Comput. – 2015. – Vol. 53, no. 12. – P. 1305–1318.
- Meng, X.H., Huang, Y.X., Rao, D.P., et al. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors // Kaohsiung J. Med. Sci. – 2013. – Vol. 29, no. 2. – P. 93–99.
- Anderson, J.P., Parikh, J.R., Shenfeld, D.K., et al. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records // J. Diabetes. Sci. Technol. – 2015. – Vol. 10, no. 1. – P. 6–18.
- Choi, S.B., Kim, W.J., Yoo, T.K., et al. Screening for Prediabetes Using Machine Learning Models // Comput. Math. Methods Med. – 2014. – Vol. 2014. – Art. ID 618976.
- Çalisir, D., Dogantekin, E. An Automatic Diabetes Diagnosis System Based on LDA Wavelet Support Vector Machine Classifier // Expert Syst. Appl. – 2011. – Vol. 38, no. 7. – P. 8311–8315.
- Georga, E.I., Protopappas, V.C., Ardigò, D., et al. Multivariate Prediction of Subcutaneous Glucose Concentration in Type 1 Diabetes Patients Based on Support Vector Regression // IEEE J. Biomed. Health Inform. – 2013. – Vol. 17, no. 1. – P. 71–81.
- Han, L., Luo, S., Yu, J., et al. Rule Extraction from Support Vector Machines Using Ensemble Learning Approach: An Application for Diagnosis of Diabetes // IEEE J Biomed Health Inform. – 2015. – Vol. 19, no. 2. – P. 728–734.
- Sudharsan, B., Peeples, M., Shomali, M. Hypoglycemia Prediction Using Machine Learning Models for Patients with Type 2 Diabetes // J. Diabetes Sci. Technol. – 2015, – Vol. 9, no. 1. – P. 86–90.
- Georga, E.I., Protopappas, V.C., Ardigò, D., et al. A Glucose Model Based on Support Vector Regression for the Prediction of Hypoglycemic Events under Free Living Conditions // Diabetes Technol. Ther. – 2013. – Vol. 15, no. 8. – P. 634–643.
- Jensen, M.H., Mahmoudi, Z., Christensen, T.F., et al. Evaluation of an Algorithm for Retrospective Hypoglycemia Detection Using Professional Continuous Glucose Monitoring Data // J. Diabetes Sci. Technol. – 2014. – Vol. 8, no. 1. – P. 117–122.
- Nallicheri, A., Mahoney, K.M., Gutow, H.A., et al. Review of Automated Insulin Delivery Systems for Type 1 Diabetes and Associated Time in Range Outcomes // touchREV Endocrinol. – 2022. – Vol. 18, no. 1. – P. 27–34.
- Карпельев В.А., Филиппов Ю.И., Тарасов Ю.В. и др. Математическое моделирование системы регуляции гликемии у пациентов с сахарным диабетом // Вестник РАМН. – 2015. – Т. 70, № 5. – P. 549–560. [Karpel’ev, V.A., Filippov, Yu.I., Tarasov, Yu.V., et al. Mathematical Modeling of the Blood Glucose Regulation System in Diabetes Mellitus Patients // Annals of the Russian Academy of Medical Sciences. – 2015. – Vol. 70, no. 5. – P. 549–560. (In Russian)]
- Soylu, S., Danisman, K. Comparison of PID based Control Algorithms for Daily Blood Glucose Control // Proceedings of the 2nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16). – Budapest, Hungary, 2016. – doi: 10.11159/eee16.130.
- Ortmann, L., Shi, D., Dassau, E., et al. Gaussian Process-Based Model Predictive Control of Blood Glucose for Patients with Type 1 Diabetes Mellitus // 11th Asian Control Conference (ASCC). – Gold Coast, Australia, 2017. – P. 1092–1097.
- Tuppad, A., Patil, S.D. Machine Learning for Diabetes Clinical Decision Support: A Review // Adv. in Comp. Int. – 2022. – Vol. 2. – Art. no. 22. – doi: 10.1007/s43674-022-00034-y.
- Meng, X.H. Statistical Paradises and Paradoxes in Big Data (i): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election // The Annals of Applied Statistics. – 2018. – Vol. 12, no. 2. – P. 685–726.
- Auffray, C., Charron, D., Hood, L. Predictive, Preventive, Personalized and Participatory Medicine: Back to the Future // Genome Medicine. – 2010. – Vol. 2. – Art. no. 57.
- Пальцев М.А., Белушкина Н.Н., Чабан Е.А. 4П-медицина как новая модель здравоохранения в российской федерации // ОРГЗДРАВ: новости, мнения, обучение. – 2015. – № 2. – C. 48–54. [Pal'tsev, M.A., Belushkina, N.N., Chaban, E.A. 4P-meditsina kak novaya model' zdravookhraneniya v rossiiskoi federatsii // ORGZDRAV: novosti, mneniya, obuchenie. – 2015. – No. 2. – P. 48–54. (In Russian)]
- Sorensen, J. A Physiological Model of Glucose Metabolism in Man and Its Use to Design and Assess Improved Insulin Therapies for Diabetes: Thesis (Sc. D.). – Boston: MIT, 1985. – 556 p.
- Markakis, M.G., Mitsis, G.D., Marmarelis, V.Z. Computational Study of an Augmented Minimal Model for Glycaemia Control // Proceedings of the 30-th IEEE EMBS Annual International Conference. – Vancouver, Canada, 2008. – P. 5445–5448.
- Древаль А.В., Шестакова Т.П., Древаль О.А. и др. Сложная математическая модель регулирования гликемии, включающая данные непрерывного мониторирования гдикемии и предназначенная для оптимизации помповой инсулинотерапии. В сб. «Помповая инсулинотерапия и непрерывное мониторирование гдикемии» (Ред. А.В. Древаль). – М.: ГЭОТАР-Медиа, 2019. – С. 255–265. [Dreval', A.V., Shestakova, T.P., Dreval', O.A., et al. Slozhnaya matematicheskaya model' regulirovaniya glikemii, vklyuchayu-shchaya dannye nepreryvnogo monitorirovaniya gdikemii i prednaznachennaya dlya optimizatsii pompovoi insulinoterapii. V sb. «Pompovaya insulinoterapiya i nepreryvnoe monitorirovanie gdikemiI» (Red. A.V. Dreval'). – M.: GEHOTAR-Media, 2019. – P. 255–265. (In Russian)]
- Михальский А.И., Новосельцева Ж.А. Моделирование непрерывной гликемической кривой // Труды 12-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD-2019). – М.: ИПУ РАН, 2019. – С. 1161–1166. [Mikhal'skii, A.I., Novosel'tseva, Zh.A. Modeliro-vanie nepreryvnoi glikemicheskoi krivoi // Trudy 12-i Mezhduna-rodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sisteM» (MLSD-2019). – M.: IPU RAN, 2019. – P. 1161–1166. (In Russian)]
- Михальский А.И., Новосельцева Ж.А. Построение замкнутой системы управления уровнем глюкозы в крови с выделением персонализированных параметров модели объекта // Тр. 14-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD-2021). – М.: ИПУ РАН. – 2021. – P. 1733–1740. [Mikhal'skii, A.I., Novosel'tseva, Zh.A. Postroenie zamknutoi sistemy upravleniya urovnem glyukozy v krovi s vydeleniem personalizirovannykh parametrov modeli ob’ekta // Trudy 14-i Mezhdunarodnoi konferentsii «Upravlenie razvitiem krupnomasshtabnykh sistem» (MLSD-2021). – M.: IPU RAN, 2021. – S. 1733–1740. (In Russian)]
- Древаль А.В., Новосельцев В.Н., Оркина Е.Л. Сложная математическая модель сахарного диабета в оценке различных механизмов патогенеза гипергликемии и подбора оптимальной помповой инсулинотерапии // Автоматика и телемеханика. – 1982. – № 11. – С. 174–176. [Dreval', A.V., Novosel'tsev, V.N., Orkina, E.L. Slozhnaya matematicheskaya model' sakharnogo diabeta v otsenke razlichnykh mekha-nizmov patogeneza giperglikemii i podbora optimal'noi pompovoi insulinoterapii // Avtomatika i Telemekhanika. – 1982. – No. 11. – P. 174–176. (In Russian)]
- Древаль А.В., Маколкин В.И., Новосельцев В.Н. и др. Проверка некоторых гипотез о патогенезе диабета методом математического моделирования // Биофизика. – 1983. – Т. 28, № 5. – С. 866–872. [Dreval', A.V., Makolkin, V.I., Novosel'tsev, V.N., et al. Proverka nekotorykh gipotez o patogeneze diabeta metodom matematicheskogo modelirovaniya // Biofizika. – 1983. – Vol. 28, no. 5. – P. 866–872. (In Russian)]
- Shirin, A., Della Rossa, F., Klickstein, I., et al. Optimal Regulation of Blood Glucose Level in Type 1 Diabetes Using Insulin and Glucagon.// PloS ONE. – 2019. – Vol. 14, no. 3. – e0213665, https:doi.org/10.1371/journal.pone.0213665.
- Marmarelis, V. Modeling Methodology for Nonlinear Physiological Systems // Ann. Biomed. Eng. – 1997. – Vol. 25. – P. 239–251.
- Мерков А.Б. Распознавание образов. Введение в методы статистического обучения. – М.: Едиториал УРСС, 2011. – 256 с. [Merkov, A.B. Raspoznavanie obrazov. Vvedenie v metody statisticheskogo obucheniya. – M.: Editorial URSS, 2011. – 256 s. (In Russian)]
- Marmarelis, V. Identification of Nonlinear Biological Systems Using Laguerre Expansions of Kernels // Ann. Biomed. Eng. – 1993. – Vol. 21. – P. 573–589.
- Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Сахарный диабет 1 типа у взрослых // Сахарный диабет. – 2020. – Т. 23. – № 1S. – С. 42–114. [Dedov, I.I., Shestakova, M.V., Mayorov, A.Y., et al. Diabetes Mellitus Type 1 in Adults. // Diabetes Mellitus. – 2020. – Vol. 23, no. 1S. – P. 42–114. (In Russian)]
- Covachev, B.P., Cox, D.J., Kumar, A.L., et al. Algorithmic Evaluation of Metabolic Control and Risk of Severe Hypoglycemia in Type 1 and Type 2 Diabetes Using Self-Monitoring Blood Glucose Data // Diabetes Technol. Ther. – 2003. – Vol. 5. – P. 817–828.
- Nallicheri, A., Mahoney, K.M., Gutow, H.A., et al. Review of Automated Insulin Delivery Systems for Type 1 Diabetes and Associated Time in Range Outcomes // touchREV Endocrinol. – 2022. – Vol. 18, no. 1. – P. 27–34.
Supplementary files
