A Local Path Planning Algorithm for Avoiding Obstacles in the Frenet Frame
- Autores: Makarov M.I1
-
Afiliações:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Edição: Nº 3 (2024)
- Páginas: 66-72
- Seção: Control of Moving Objects and Navigation
- URL: https://journals.rcsi.science/1819-3161/article/view/273461
- DOI: https://doi.org/10.25728/pu.2024.3.5
- ID: 273461
Citar
Texto integral
Resumo
This paper presents a local path planning algorithm in the coordinate system of the roadbed. The algorithm is based on varying initial trajectory points using the potential field method and ensuring the smooth resulting path in a new coordinate system. This algorithm is executed by minimizing an objective functional. The problem is solved with application to path planning for an unmanned transport platform: it is necessary to change the vehicle’s global smooth trajectory points in real time while maintaining smoothness and avoiding emerging obstacles. Compared to the Cartesian coordinate system, the new coordinate system is advantageous in terms of the execution time of the algorithm. The algorithm is implemented in Python. With a planning horizon being specified, this approach can be combined with various path-following algorithms that have no obstacle avoidance methods. Computer simulation results are provided to demonstrate the effectiveness of the proposed algorithm.
Palavras-chave
Sobre autores
M. Makarov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: maxim.i.makarov@gmail.com
Moscow, Russia
Bibliografia
- Гилимьянов Р.Ф., Рапопорт Л.Б. Метод деформации пути в задачах планирования движения роботов при наличии препятствий // Проблемы управления. – 2012. – № 1. – С. 70–76. [Rapoport, L.B., Gilimyanov, R.F. Path Deformation Method for Robot Motion Planning Problems in the Presence of Obstacles // Automation and Remote Control. – 2013. – Vol. 74, no. 12. – P. 2163–2172.]
- Basavanna, M., Shivakumar, M. An Overview of Path Planning and Obstacle Avoidance Algorithms in Mobile Robots // International Journal of Engineering Research & Technology (IJERT). – 2019. – Vol. 08, iss. 12.
- Lu, B., Li, G., Yu, H., et al. Adaptive Potential Field-Based Path Planning for Complex Autonomous Driving Scenarios // IEEE Access. – 2020. – Vol. 8. – P. 225294–225305. – doi: 10.1109/ACCESS.2020.3044909.
- Werling, M., Ziegler, J., Kammel, S., Thrun, S. Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame. Proceedings // Proceedings of the IEEE International Conference on Robotics and Automation. – Anchorage, 2010. – P. 987–993. – doi: 10.1109/ROBOT.2010.5509799.
- Гилимьянов Р.Ф., Пестерев А.В., Рапопорт Л.Б. Сглаживание кривизны траекторий, построенных по зашумленным измерениям в задачах планирования пути для колесных роботов // Известия РАН. Теория и системы управления. – 2008. – № 5. – С. 148–156. [Gilimyanov, R.F., Pesterev, A.V., Rapoport, L.B. Smoothing Curvature of Trajectories Constructed by Noisy Measurements in Path Planning Problems for Wheeled Robots // Journal of Computer and Systems Sciences International. – 2008. – Vol. 47, no. 5. – P. 812–819.]
- Thrun, S., Montemerlo, M., Dahlkamp, H., et al. Stanley: The Robot That Won the DARPA Grand Challenge // In: The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics. Vol 36. Ed. by M. Buehler, K. Iagnemma, S. Singh. – Berlin, Heidelberg: Springer, 2007. – P. 1–43.
Arquivos suplementares


