Modern Approaches to Prognostics and Health Management of an Aircraft Electromechanical Actuator
- Authors: Kulida E.L1, Lebedev V.G1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 3 (2024)
- Pages: 3-19
- Section: Surveys
- URL: https://journals.rcsi.science/1819-3161/article/view/273457
- DOI: https://doi.org/10.25728/pu.2024.3.1
- ID: 273457
Cite item
Full Text
Abstract
About the authors
E. L Kulida
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: elena-kulida@yandex.ru
Moscow, Russia
V. G Lebedev
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: lebedev-valentin@yandex.ru
Moscow, Russia
References
- Garcia Garriga, A., Ponnusamy, S. S., Mainini, L. A Multi-fidelity Framework to Support the Design of More-Electric Actuation // AIAA Aviation Forum. Multidisciplinary Analysis and Optimization Conference. – Atlanta, 2018. – doi: 10.2514/6.2018-3741.
- Adu-Gyamfi, B.A., Good, C. Electric aviation: a Review of Concepts and Enabling Technologies // Transportation Engineering. – 2022. – Vol. 9, no. 4 – doi: 10.1016/j.treng. 2022.100134.
- Baldo, L., Querques, I., Dalla Vedova, M.D.L., et al. A Model-Based Prognostic Framework for Electromechanical Actuators Based on Metaheuristic Algorithms // Aerospace. – 2023. – Vol. 10, no. 3. – doi: 10.3390/aerospace10030293.
- Li, J., Yu, Z., Huang, Y., Li, Z. A Review of Electromechanical Actuation System for More Electric Aircraft // Proceedings of the IEEE International Conference on Aircraft Utility Systems (AUS). – Beijing, 2016. – P. 490–497.
- Annaz, F.Y., Kaluarachchi, M.M. Progress in Redundant Electromechanical Actuators for Aerospace Applications // Aerospace. – 2023. – Vol. 10(9). – doi: 10.3390/aerospace10090787.
- Fu, S., Avdelidis, N.P. Prognostic and Health Management of Critical Aircraft Systems and Components: An Overview // Sensors. – 2023. – Vol. 23, no. 19. – doi: 10.3390/s23198124.
- Bertolino, A.C., De Martin, A., Jacazio, G., Sorli, M. Towards a PHM System for Electromechanical Flight Control Actuators // Proceedings of I-RIM 2020. – Torino, 2020. – doi: 10.5281/zenodo.4781001.
- Bertolino, A.C., De Martin, A., Jacazio, G., Sorli, M. Design and Preliminary Performance Assessment of a PHM System for Electromechanical Flight Control Actuators // Aerospace. – 2023. – Vol. 10. – DOI: 10.3390/ aerospace10040335.
- Baldo L., Berri P.C., Matteo D. L., et al. Experimental Validation of Multi-fidelity Models for Prognostics of Electromechanical Actuators // Proceedings of the 7th European Conference of the Prognostics and Health Management Society. – Torino, 2022. – Vol. 7, no.1. – P. 32–42. – DOI: 10.36001.phme.2022.v7i1.3347.
- Cai, B., Zhao Y., Liu, H., Xie, M. A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems // IEEE Transaction on Power Electronics. – 2017. – Vol. 32, no. 7. – P. 5590–5600.
- Sudhawiyangkul, T., Isarakorn, D. Design and Realization of an Energy Autonomous Wireless Sensor System for Ball Screw Fault Diagnosis // Sensors and Actuators A Physical. – 2017. – Vol. 258. – P. 49–58.
- Chirico, A., Kolodziej, J.R. Fault Detection and Isolation for Electro-Mechanical Actuators Using a Data-Driven Bayesian Classification // SAE International Journal of Aerospace. – 2012. – Vol. 5, no. 2. – P. 494–502.
- Chirico, A.J., Kolodziej, J.R. A Data-driven Methodology for Fault Detection in Electromechanical Actuators // Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. – 2014. – Vol. 136, no. 4. – doi: 10.1115/1.4026835.
- Song, Y., Du, J., Li, S. Multi-Scale Feature Fusion Convolutional Neural Networks for Fault Diagnosis of Electromechanical Actuator // Applied Sciences. – 2023. – Vol. 13, no. 15. – Art. no. 8689. – doi: 10.3390/app13158689.
- Wang, J., Zhang, Y., Luo, C., Miao, Q. Deep Learning Domain Adaptation for Electro-Mechanical Actuator Fault Diagnosis Under Variable Driving Waveforms // IEEE Sensors Journal. – 2022. – Vol. 22, no. 11. – P. 10783–10793.
- Derrien, J.-C., Securite, S.D. Electromechanical Actuator (EMA) Advanced Technologies for Flight Controls // 28-th International Congress of the Aeronautical Sciences (ICAS 2012). – Brisbane, 2012. – URL: https://icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/291.PDF.
- Qiao, G. Liu, G. Shi, Z., et al. A Review of Electromechanical Actuators for More/All Electric Aircraft Systems // Proceedings of Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science. – 2018. – Vol. 232, no. 22. – P. 4128–4151. – doi: 10.1177/0954406217749869.
- Yin, Z, Hu, N., Chen, J., et al. A Review of Fault Diagnosis, Prognosis and Health Management for Aircraft Electromechanical Actuators // IET Electronic Power Applications. – 2022. – Vol. 16, no. 11. – P. 1249–1272. – doi: 10.1049/elp2.12225.
- Jian, F., Mare, J.-C., Yongling, F. Modelling and Simulation of Flight Control Electromechanical Actuators with Special Focus on Model Architecting, Multidisciplinary Effects and Power Flows // Chinese Journal of Aeronautics. – 2017. – No. 30 (1). – P. 47–65.
- Cui, Z., Jing, B., Jiao, X., et al. The Integrated-Servo-Actuator Degradation Prognosis Based on the Physical Model Combined With Data-Driven Approach // IEEE Sensors Journal. – 2023. – Vol. 23, no. 9. – P. 9370–9381. – doi: 10.1109/JSEN.2023.3248323.
- Randall, R.B. The Use of Simulation Models to Generate Data Corresponding to Faults in Machines // 8th International Conference on Reliability, Maintainability and Safety (ICRMS-2009). – Chendgu, 2009. – doi: 10.1109/ICRMS.2009.5269971.
- Mazzoleni, M., Di Rito, G., Previdi, F. Electromechanical Actuators for the More Electric Aircraft. – Cham: Springer, 2021. – 239 p. – doi: 10.1007/978-3-030-61799-8.
- Hopf, K., Reifenrath, S. Filter Methods for Feature Selection in Supervised Machine Learning Applications – Review and Benchmark // Cornell University. – arXiv: 2111.12140v1[cs.LG]. – 2021. – doi: 10.48550/arXiv2111.12140.
- Chirico, A.J., Kolodziej, J.R., Hall, L. A Data Driven Frequency Based Feature Extraction and Classification Method for EMA Fault Detection and Isolation // 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. – Houston, 2012. – doi: 10.1115/DSCC2012-MOVIC2012-8749.
- Jing, J., Liu, H., Lu, C. Fault Diagnosis of the Aircraft Electromechanical Actuation System Based on WPD-STFT Time Frequency Entropy and PNN // Vibroengineering Procedia. – Oct. 2017. – Vol. 14. – doi: 10.21595/vp.2017.19247.
- Li, J., Meng, G., Xie, G., Jia, Y. Sensor Fault Diagnosis Based on Wavelet Packet and SOM Neural Network // Chinese Journal of Sensors and Actuators. – 2017. – Vol. 30, no. 7. – P. 1035–1039. – DOI: 103969/j.issn.1004-1699.2017.07.011.
- Ruiz-Cárcel, C., Starr, A. Data-Based Detection and Diagnosis of Faults in Linear Actuators // IEEE Transactions on Instrumentation and Measurement. – 2018. – Vol. 67. – Iss. 9. – P. 2035–2047. – doi: 10.1109/TIM.2018.2814067.
- Narasimhan, S., Roychoudhury, I., Balaban, E., Saxena, A. Combining Model-Based and Feature-Driven Diagnosis Approaches-A Case Study on Electromechanical Actuators // Proceeding of the 21-st International Workshop on Principles of Diagnosis Held Jointly with Annual Conference of the PHM Society. – Portland, 2010. – Vol. 2, no. 2. – doi: 10.36001/phmconf.2010.v2i2.1936.
- Wang, C., Ding, Y., Ma, J. An Adversarial Model for Electromechanical Actuator Fault Diagnosis under Nonideal Data Conditions // Neural Computing and Applications. – 2022. – Vol. 34, no. 1115. – P. 5883–5904. – doi: 10.1007/s00521-021-06732-x.
- Yang, J., Guo, Y., Zhao, W. Long Short‐Term Memory Neural Network Based Fault Detection and Isolation for Electromechanical Actuators // Neurocomputing. – 2019. – Vol. 360. – P. 85–96. – doi: 10.1016/j.neucom.2019.06.029.
- Yang, N., Shen, J., Jia, Y., Zhang, J. Fault Diagnosis of Electromechanical Actuator Based on Deep Learning Network // 39th Chinese Control Conference (CCC). – Shenyang, 2020. – P. 4002–4006. – doi: 10.23919/CCC50068.2020.9189666.
- Riaz, N., Shah, S.I.A., Rehman, F., et al. A Novel 2-D Current Signal-based Residual Learning with Optimized Softmax to Identify Faults in Ball Screw Actuators // IEEE Access. – 2020. – Vol. 8. – P. 115 299–115 313. – doi: 10.1109/access.2020.3004489.
- Siahpour, S., Li, X., Lee, J. Deep Learning-based Cross-sensor Domain Adaptation for Fault Diagnosis of Electromechanical Actuators // International Journal of Dynamics and Control. – 2020. – Vol. 8. – P. 1054–1062. – doi: 10.1007/s40435-020-00669-0.
- Ding, Y., Ma, L., Ma, J., et al. A Generative Adversarial Network-based Intelligent Fault Diagnosis Method for Rotating Machinery under Small Sample Size Conditions // IEEE Access. – Vol. 7. – P. 149 736–149 749. – doi: 10.1109/ACCESS.2019.2947194.
- Wang, Y., Sun, G., Jin, Q. Imbalanced Sample Fault Diagnosis of Rotating Machinery Using Conditional Variational Auto-encoder Generative Adversarial Network // Applied Soft Computing Journal. – 2020. – Vol. 92, no. 7. – Art. no. 106333. – doi: 10.1016/j.asoc.2020.106333.
- Zhang, L., Gao, H., Wen, J., et al. A Deep Learning‐Based Recognition Method for Degradation Monitoring of Ball Screw with Multi‐sensor Data Fusion // Microelectronics Reliability. – 2017. – Vol. 75. – P. 215–222. – doi: 10.1016/j.microrel.2017.03.038.
- Yang, J., Guo, Y., Wanti, Z. An Intelligent Fault Diagnosis Method for an Electromechanical Actuator Based on Sparse Feature and Long Short‐Term Network // Measurement Science Technology. – 2021. – Vol. 32, no. 9. – doi: 10.1088/1361-6501/abfbab.
- Zhang, X., Tang, L., Chen, J. Fault Diagnosis for Electro‐Mechanical Actuators Based on STL‐HSTA‐GRU and SM // IEEE Transaction on Instrumentation and Measurement. – 2021. – Vol. 70. – doi: 10.1109/tim.2021.3127641.
- Tao, X., Guo, Y., Zhao, W., et al. Fault Detection and Isolation of Electromechanical Actuator Based on SAE-BiLSTM // The 13th Asia Conference on Mechanical and Aerospace Engineering (ACMAE 2022). Journal of Physics: Conference Series. – 2023. – Vol. 2472. – Art. no. 012031. – doi: 10.1088/1742-6596/2472/1/012031.
- Zhang, W., Peng, G., Li, C. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals // Sensors. – 2017. – Vol. 17, no. 3. – doi: 10.3390/s17020425.
- Jiang, G., He, H., Yan, J., Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox // IEEE Transaction on Industrial Electronics. – 2018. – Vol. 66, no 4. – P. 3196–3207. – doi: 10.1109/TIE.2018.2844805.
- Kordestani, M., Orchard, M.E., Khorasani, K., Saif, M. An Overview of the State of the Art in Aircraft Prognostic and Health Management Strategies // IEEE Transactions on Instrumentation and Measurement. – 2023. – Vol. 72. – Art. no. 3505215. – doi: 10.1109/TIM.2023.3236342.
- Rezaeianjouybari, B., Shang, Y. Deep Learning for Prognostics and Health Management: State of the Art, Challenges, and Opportunities // Measurement. – 2020. – Vol. 163, no. 4. – doi: 10.1016/j.measurement.2020.107929.
- Lei, Y., Li, N., Guo, L., et al. Machinery Health Prognostics: a Systematic Review from Data Acquisition to RUL Prediction // Mechanical Systems and Signal Processing. – 2018. – Vol. 104. – P. 799–834. – DOI: 10.1016.j.ymssp.2017.11.016.
- Berri, P.C., Dalla Vedova, M.D.L., Mainini, L. Computational Framework for Real-time Diagnostics and Prognostics of Aircraft Actuation Systems // Computers in Industry. – 2021. – Vol. 132. – doi: 10.1016/compind.2021.103523.
- Stanton, I., Munir, K., Ikram, A. Predictive Maintenance Analytics and Implementation for Aircraft: Challenges and Opportunities // System Engineering. – 2022. – Vol. 26, no. 137. – doi: 10.1002/sys.21651.
- Scott, M.J., Verhagen, W.J.C., Bier, M.T., Marzocca, P. A Systematic Literature Review of Predictive Maintenance for Defence Fixed-Wing Aircraft Sustainment and Operations // Sensors. – 2022. – Vol. 22, no. 18. – doi: 10.3390/s22187070.
- Ismail, M.A.A., Balaban, E., Windelberg, J. Spall Fault Quantification Method for Flight Control Electromechanical Actuator // Actuators. – 2022. – Vol. 11, no. 29. – doi: 10.3390/act11020029.
- Belmonte, D., Dalla Vedova, M.D.L., Maggiore, P. Prognostics of Onboard Electromechanical Actuators: a New Approach Based on Spectral Analysis Techniques // International Review of Aerospace Engineering. – 2018. – Vol. 11, no. 3. – doi: 10.15866/irease.v11i3.13796.
- Zhang, J., Tian, J., Li, M., et al. A Parallel Hybrid Neural Network with Integration of Spatial and Temporal Features for Remaining Useful Life Prediction in Prognostics // IEEE Transaction on Instrumentation and Measurement. – 2023. – Vol. 72. – doi: 10.1109/TIM.2022.3227956.
- Dangut, M. D., Jennions, I.K., King, S., Skaf, Z. A Rare Failure Detection Model for Aircraft Predictive Maintenance Using a Deep Hybrid Learning Approach // Neural Computing and Applications. – 2023. – Vol. 35, no. 4. – P. 2991–3009. – doi: 10.1007/s00521-022-07167-8.
- Hasib, A.A., Rahman, A., Khabir, M., Shawon, M.T. An Interpretable Systematic Review of Machine Learning Models for Predictive Maintenance of Aircraft Engine // Cornell University. – arXiv:2309.13310v1[cs.LG]. – 2023. – doi: 10.48550/arXiv.2309.13310.
- Khan, K., Sohaib, M., Rashid, A. Recent Trends and Challenges in Predictive Maintenance of Aircraft’s Engine and Hydraulic System // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2021. – Vol. 43, no. 8. – doi: 10.1007/s40430-021-03121-2.
- Boujamza, A., Lissane Elhaq, S. Attention-Based LSTM for Remaining Useful Life Estimation of Aircraft Engines // IFACPapersOnLine. – 2022. – Vol. 55, no. 12. – P. 450–455. – doi: 10.1016/j.ifacol.2022.07.353.
- Wang, C., Zhu, Z., Lu, N. A Data-Driven Degradation Prognostic Strategy for Aero-Engine under Various Operational Conditions // Neurocomputing. – 2021. – Vol. 462, no. 3. – P. 195–207. – doi: 10.1016/j.neucom.2021.07.080.
- Chao, M.A., Kulkarni, C., Goebel, K., Fink, O. Fusing Physics-based and Deep Learning Models for Prognostics // Reliability Engineering and System Safety. – 2022. – Vol. 217, no. 3. – doi: 10.1016/j.ress.2021.107961.
- Aimasso, A., Berri, P.C., Dalla Vedova, M.D. A Genetic-based Prognostic Method for Aerospace Electromechanical Actuators. International Journal of Mechanics and Control. – 2021. – Vol. 22, no. 2. – P. 195–206.
- Baldo, I., Vedova, M.D.L., Querques, I., Magglore, P. Prognostics of Aerospace Electromechanical Actuators: Comparison between Model-based Meta-heuristic Methods // Journal of Physics: Conference Series. – 2023. – Vol. 2526, no. 1. – Art. no. 012073. – doi: 10.1088/1743-6596/1/012073.
- Dalla Vedova, M.D.L., Berri, P.C., Re, S. A Comparison of Bio-inspired Meta-hevristic Algorithms for Aircraft Actuator Prognostics // 29th European Safety and Reliability Conference. – Hannover, – 2019. – doi: 10.3850/978-981-11-2724-3_0476-cd.
- Berri, P.C., Dalla Vedova, M.D., Maggiore, P. A Lumped Parameter High Fidelity EMA Model for Model-Based Prognostics // 29th European Safety and Reliability Conference. – Hannover, 2019. – P. 1086–1093. doi: 10.3850/978-981-11-2724-3_0480-cd.
- Berri, P.C., Dalla Vedova, M.D.L., Maggiore, P., Viglione, F. A Simplified Monitoring Model for PMSM Servoactuator Prognostics // Proceedings of the MATEC Web of Conferences. – Osaka, 2018. – doi: 10.1051/matecconf/201930404013.
- Randall, R.B. The Use of Simulation Models to Generate Data Corresponding to Faults in Machines // 8th International Conference on Reliability, Maintainability and Safety (ICRMS-2009). – Chengdu, 2009. – doi: 10.1109/ICRMS.2009.5269971.
- Ahmad, M.F., Isa, N.A.M., Lim, W.H., Ang, K.M. Differential Evolution: A Recent Review Based on State-of-the-Art Works // Alexandria Engineering Journal. – 2022. – Vol. 61, no. 5. – P. 3831–3872. – doi: 10.1016/j.aej.2021.09.013.
- Kennedy, J., Eberhart, R. Particle Swarm Optimization // Proceedings of the IEEE International Conference on Neural Networks. – Perth, 1995. – P. 1942–1948. – doi: 10.1109/ICNN.1995.488968.
- Darwish, A. Bio-inspired Computing: Algorithms Review, Deep Analysis, and the Scope of Applications // Future Computing and Informatics Journal. – 2018. – Vol. 3, no. 2. – P. 231–246. – doi: 10.1016/j.fcij.2018.06.001.
- Mirjalili, S., Mirjalili, S.M., Lewis, A. Grey Wolf Optimizer // Advances in Engineering. – 2014. – Vol. 69. – P. 46–61. – doi: 10.1016/j.advengsoft.2013.12.007.
- Kumar, V., Kumar, D. An Astrophysics-inspired Grey Wolf Algorithm for Numerical Optimization and its Application to Engineering Design Problems // Advances in Engineering Software. – 2017. – Vol. 112. – P. 231–254. – doi: 10.1016/advengsoft.2017.05.008.
- Егоров И.В., Соколов М.П. Сравнение эффективности нейросетевых алгоритмов с методами факторного анализа при диагностировании технического состояния ГТД // Научный вестник МГТУ ГА. Серия «Эксплуатация воздушного транспорта и ремонт авиационной техники». – 2007. – № 123. – С. 89–95. [Egorov, I.V., Sokolov, M.P. Sravnenie efektivnosti neirosetevykh algoritmov s metodami faktopnogo analiza pri diagnostirovanii tekhnicheskogo sostoyaniya // Nauchnyj vestnik MGTU GA. Seriya «Ekspluatatsiya vozdushnogo transporta I remont aviatsionnoj tekhniki». – 2007. – No. 123. – P. 89–95. (In Russian)].
- Соколов М.П., Земсков А.А., Куц М.С. Тренды технического диагностирования силовых установок и трансмиссий воздушных судов // Транспортное, горное и строительное машиностроение: наука и производство. – 2022. – № 15. – С. 37–46. [Sokolov, M.P., Zemskov, A.A., Kuts, M.S. Trendy tekhnicheskogo diagnostirovaniya silovykh ustanovok i transmissij vozdushnykh sudov // Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. – 2022. – No. 15. – P. 37–46. (In Russian)]
- Mikhailov, A., Karavay, M., Farhadov, M. Inverse Sets in Big Data Processing // Proceedings of the 11th IEEE International Conference on Application of Information and Communication Technologies (AICT2017). – Мoscow, 2017. – Vol. 1. – Р. 40–43.
- Сальников С.В., Солодкий Е.М., Вишняков Д.Д. и др. Диагностика асинхронного двигателя на основе машинного обучения // Международная конференция по мягким вычислениям и измерениям. – Санкт-Петербург, 2023. – Т. 1. – С. 295–300. [Sal’nikov, S.V., Solodkij, E.M., Vishnyakov, D.D., et al. Diagnostika asinkhronnogo dvigatelya na osnove mashinnogo obucheniya //Mezhdunarodnaya konferentsiya po myagkim vychisleniyam I izmereniyam. – Saint Petersburg, 2023. – Vol. 1. – P. 295–300. (In Russian)]
- Козлов Д.С., Тюменцев Ю.В. Нейросетевые методы обнаружения отказов датчиков и приводов летательного аппарата // Труды МАИ. – 2012. – Вып. 52. – C. 2. [Kozlov, D.S., Tiumentsev, Y.V. Nejrosetevye metody obnaruzheniya otkazov datchikov i privodov letatel’nogo apparata // Trudy MAI. – 2012. – Vol. 52. – P. 2. (In Russian)]
- Erofeev, E., Khaletskiy, L., Skryabin, A., Steblinkin, A. Methodologies and test-rig configurations for the experimental improvement of flight control actuation systems // Recent Advances in Aerospace Actuation Systems and Component. Conference proceedings. – Toulouse, 2018. – P. 109–116.
- Вересников Г.С., Скрябин А.В., Гуцевич Д.Е. Разработка математической модели для исследования алгоритмов оценки и прогноза технического состояния сервопривода БЛА // Известия ЮФУ. Технические науки. – 2019. – № 7. – С. 170–181. [Veresnikov, G.S., Skryabin, A.V., Gutsevich, D.E. Razrabotka matematicheskoj modeli dlya issledovaniya algoritmov otsenki I prognoza tekhnicheskogo sostoyaniya servoprivoda BLA // Izvestiya YUFU. Tekhnicheskie nauki. – 2019. – No. 7. – P. 170–181. (In Russian)]
- Veresnikov, G.S., Skryabin, A.V., Bazhenov, S.G. The Development of Algorithms for EMA Fault Early Detection System // Proceedings of the 32th Congress of the International Council of the Aeronautical Sciences. – Shanghai, 2020. – URL: https://www.icas.org/ICAS_ARCHIVE/ICAS2020/data/preview/ICAS2020_0239.htm.
- Veresnikov, G.S., Lebedev, V.G., Ogorodnikov, O.V., Golev, A.V. Fault Detection Technique for Electromechanical Actuator of the Aircraft Using Neural Networks // Lecture Notes in Mechanical Engineering. – Cham: Springer, 2021. – P. 519–528.
- Вересников Г.С., Скрябин А.В. Алгоритмы поиска информативных признаков для прогнозирования технического состояния электромеханического привода // Тр. 14-й международной конференции «Управление развитием крупномасштабных систем» (MLSD-2021). – Москва, 2021. – С. 1389–1397. [Veresnikov, G.S., Skryabin, A.V. Feature Selection Algorithms for Forecasting Technical Condition of Electromechanical Actuator // Proceedings of the 14th International Conference «Management of Large-Scale System Development» (MLSD). – Мoscow, 2021. – URL: https://ieeexplore.ieee.org/document/9600182/.
- Вересников Г.С., Скрябин А.В. Диагностика неисправностей смешанного типа в редукторе электромеханического привода летательного аппарата с использованием нейронных сетей // Тр. 15-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD-2022). – Москва, 2022. – С. 1116–1122. [Veresnikov, G.S., Skryabin, A.V. Diagnostics of Mixed Type Failures in the Aircraft Electromechanical Actuator Gear by Using Neural Networks // Proceedings of the 15th International Conference Management of Large-Scale System Development (MLSD). – Мoscow, 2022. – URL: https://ieeexplore.ieee.org/document/9600182.
Supplementary files
