An Entropy-Based Composite Indicator for Evaluating the Effectiveness of Recommender System Algorithms
- Авторлар: Kulshin R.S1, Sidorov A.A1
-
Мекемелер:
- Tomsk State University of Control Systems and Radioelectronics
- Шығарылым: № 4 (2024)
- Беттер: 44-60
- Бөлім: Information Technology in Control
- URL: https://journals.rcsi.science/1819-3161/article/view/272865
- DOI: https://doi.org/10.25728/pu.2024.4.4
- ID: 272865
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
R. Kulshin
Tomsk State University of Control Systems and Radioelectronics
Email: roman.s.kulshin@tusur.ru
Tomsk, Russia
A. Sidorov
Tomsk State University of Control Systems and Radioelectronics
Email: anatolii.a.sidorov@tusur.ru
Tomsk, Russia
Әдебиет тізімі
- Fayyaz, Z., Ebrahimian, M., Nawara, D., et al. Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities // Appl. Sci. – 2020. – Vol. 10, no. 21. – Art. no. 7748. – DOI: https://doi.org/10.3390/app10217748.
- Amatriain, X., Basilico, J. Recommender Systems in Industry: A Netflix Case Study. Recommender Systems Handbook / Ed. by F. Ricci, L. Rokach, B. Shapira. – Boston, MA: Springer, 2015. – P. 385–419. – DOI: https://doi.org/10.1007/978-1-4899-7637-6_11.
- Wibisono, C., Purwanti, E., Effendy, F. A Systematic Literature Review of Movie Recommender Systems for Movie Streaming Service // AIP Conf. Proc. – 2023. – Vol. 2554, no. 1. – Art. no. 040005. – DOI: https://doi.org/10.1063/0104316.
- Kulshin, R., Sidorov, A., Senchenko, P. Using Neural Networks with Reinforcement in the Tasks of Forming User Recommendations // Journal of Physics: Conference Series. – 2022. – Vol. 2291, no. 1. – Art. no. 012005. – doi: 10.1088/1742-6596/2291/1/012005.
- Sipser, M. Introduction to the Theory of Computation. Course Technology. – Boston, MA: PWS Publishing Co., 2006. – 227 p.
- Aixin, S. On Challenges of Evaluating Recommender Systems in an Offline Setting // Proceedings of the 17th ACM Conference on Recommender Systems. – Singapore, 2023. – P. 1284–1285.
- Jimenez-Fernandez, E., Ruiz-Martos, M. Review of some statistical methods for constructing composite indicators // Studies of Applied Economics. – 2020. – Vol. 38, no. 1. – p. 1–15. – DOI: https://doi.org/10.25115/eea.v38i1.3002.
- Nardo, M., Saisana, M., Saltelli, A., Tarantola, S. Tools for Composite Indicators Building. Report no. JRC31473. – Rome, Italy: European Commission, ISPRA, 2005.
- Becker, W., Saisana, M., Paruolo, P., Vandecasteele, I. Weights and Importance in Composite Indicators: Closing the Gap. Ecological Indicators. – 2017. – Vol. 80. – P. 12–22. – DOI: https://doi.org/10.1016/j.ecolind.2017.03.056.
- Сидоров А.А. Методологический подход к интегральной оценке состояния и динамики многомерных объектов социально-экономической природы // Проблемы управления. – 2016. – № 3. – C. 32–40. [Sidorov, A.A. Methodological Approach to the Integral Assessment of the State and Dynamics of Multidimensional Objects of Socio-Economic Nature / Control Sciences. – 2016. – No. 3 – P. 32–40. (In Russian)].
- Abberger, K., Graff, M., Müller, O., Sturm, J. Composite Global Indicators from Survey Data: The Global Economic Barometers // Rev. World Econ. – 2022. – Vol. 158. – P. 917–945. – DOI: https://doi.org/10.1007/s10290-021-00449-8.
- Endrodi-Kovacs, V., Tankovsky, O. A Composite Indicator for Economic Integration Maturity: The Case of Western Balkan Countries // Eastern Journal of European Studies. – 2022. – Vol. 13, no 1. – P. 148–166. – doi: 10.47743/ejes-2022-0107.
- Khadzhynova, O., Simanaviciene, Z., Mints, O., et al. Assessment of the EU Countries’ Economic Security Based on the Composite Indicators // WSEAS Transactions on Business and Economics. – 2022. – Vol. 19. – P. 690–700. – doi: 10.37394/23207.2022.19.61.
- McDonnell, T., Cosgrove, G., Hogan, E., et al. Methods to Derive Composite Indicators Used for Quality and Safety Measurement and Monitoring in Healthcare: A Scoping Review Protocol // BMJ Open. – 2023. – Vol. 13, no. 7. – doi: 10.1136/bmjopen-2022-071382.
- Kara, P., Valentin, J., Mainz, J., Johnsen, S. Composite Measures of Quality of Health Care: Evidence Mapping of Methodology and Reporting // PLoS One. – 2022. – Vol. 17, no. 5. – doi: 10.1371/journal.pone.0268320.
- Asadi-Lari, M., Majdzadeh, R., Mansournia, M.A, et al. Construction and Validation of CAPSES Scale as a Composite Indicator of SES for Health Research: An Application to Modeling Social Determinants of Cardiovascular Diseases // BMC Public Health. – 2023. – Vol. 23. – Art. no. 293. – DOI: https://doi.org/10.1186/s12889-023-15206-9.
- Abenayake, C., Mikami, Y., Matsuda, Y., Jayasinghe, A. Ecosystem Services-Based Composite Indicator for Assessing Community Resilience to Floods // Environmental Development. – 2018. – Vol. 27. – P. 34–46. – DOI: https://doi.org/10.1016/j.envdev.2018.08.002.
- Gómez-Limón, J., Arriaza, M., Guerrero-Baena, M. Building a Composite Indicator to Measure Environmental Sustainability Using Alternative Weighting Methods // Sustainability. – 2020. – Vol. 12, no. 11. – Art. no. 4398. – DOI: https://doi.org/10.3390/su12114398.
- Alam, M., Dupras, J., Messier, C. A Framework towards a Composite Indicator for Urban Ecosystem Services // Ecological Indicators. – 2016. – Vol. 60. – P. 38–44. – DOI: https://doi.org/10.1016/j.ecolind.2015.05.035.
- Melo-Aguilar, C., Agulles, M., Jordà, G. Introducing Uncertainties in Composite Indicators. The Case of the Impact Chain Risk Assessment Framework // Front. Clim. – 2022. – Vol. 4. – DOI: https://doi.org/10.3389/fclim.2022.1019888.
- Dolge, K., Blumberga, D. Composite Risk Index for Designing Smart Climate and Energy Policies. Environmental and Sustainability Indicators. – 2021. – Vol. 12. – Art. no. 100159. – DOI: https://doi.org/10.1016/j.indic.2021.100159.
- Do, H., Ly, T., Do, T. Combining Semi-quantitative Risk Assessment, Composite Indicator and Fuzzy Logic for Evaluation of Hazardous Chemical Accidents // Sci. Rep. – 2020. – Vol. 10. – Art. no. 18544. – DOI: https://doi.org/10.1038/s41598-020-75583-8.
- Avanesian, G., Mizunoya, S., Delamonica, E. UNICEF Remote Learning Readiness Index: A Composite Indicator to Assess Resilience of Education Sector against Crises and Emergencies // Statistical Journal of the IAOS. – 2022. – Vol. 38. – P. 1–14. – doi: 10.3233/SJI-220051.
- Segovia-Gonzalez, M., Contreras, I. A Composite Indicator to Compare the Performance of Male and Female Students in Educational Systems // Soc. Indic. Res. – 2023. – Vol. 165. – P. 181–212. – DOI: https://doi.org/10.1007/s11205-022-03009-1.
- Hubelova, D., Odvarkova, V., Chalupa, P. Selected Factors of Education Level in East African Countries: Comparative Method Using Composite Indicator // Geographical Journal. – 2016. – Vol. 68. – P. 55–72.
- Silveira, T., Zhang, M., Lin, X., et al. How Good Your Recommender System Is? A Survey on Evaluations in Recommendation. Journal of Machine Learning and Cybernetics. – 2016. – Vol. 10. – P. 813–831. – DOI: https://doi.org/10.1007/s13042-017-0762-9.
- Hongzhi, Y., Cui, B., Li, J., et al. Challenging the Long Tail Recommendation // Proceedings of the VLDB Endowment. – 2012. – Vol. 5. – P. 896–907. – DOI: https://doi.org/10.14778/2311906.2311916.
- Hanczar, B., Hua, J., Sima, C., et al. Small-Sample Precision of ROC-Related Estimates // Bioinformatics. – 2010. – Vol. 26. – P. 822–830. – DOI: https://doi.org/10.1093/bioinformatics/btq037.
- Calders, T., Jaroszewicz, S. Efficient AUC Optimization for Classification. Lecture Notes in Computer Science. – 2007. – Vol. 4702. – P. 42–53. – DOI: https://doi.org/10.1007/978-3-540-74976-9_8.
- Wenlong, S., Khenissi, S., Nasraoui, O., Shafto, P. Debiasing the Human-Recommender System Feedback Loop in Collaborative Filtering // Proceedings of the 2019 World Wide Web Conference. – San Francisco, 2019. – P. 645–651. – DOI: https://doi.org/10.1145/3308560.3317303.
- Zhang, Q., Cao, L., Zhu, C., et al. CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep Collaborative Filtering // Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. – Stockholm, 2018. – P. 3662–3668. – DOI: https://doi.org/10.24963/ijcai.2018/509.
- Bellogin, A., Castells, P., Cantador, I. Precision-Oriented Evaluation of Recommender Systems: An Algorithmic Comparison // Proceedings of the Fifth ACM Conference on Recommender Systems. – Chicago, 2011. – P. 333–336. – DOI: https://doi.org/10.1145/2043932.2043996.
- Wang, Y. Application of Recall Methods in Recommendation Systems // Proceedings of the 3rd International Conference on Signal Processing and Machine Learning. – Oxford, 2023. – Vol. 4. – P. 44–51. – doi: 10.54254/2755-2721/4/20230344.
- Zriaa, R., Sadiki, H., Ertel, M., et al. Qualitative Recommender System Using Entropy-Weighted Pedagogical Criteria for Effective Training in E-learning Platforms // Journal of Theoretical and Applied Information Technology. – 2023. – Vol. 101, no. 9. – P. 3517–3529.
- Kumar, C., Kumar, M. User Session Interaction-Based Recommendation System Using Various Machine Learning Techniques // Multimed. Tools Appl. – 2023. – Vol. 82. – P. 21 279–21 309.
- Wang, Y., Wang, L, Li, Y., et al. A Theoretical Analysis of NDCG Ranking Measures // Proceedings of the 26th Annual Conference on Learning Theory. – Princeton, 2013. – Vol. 30. – P. 25–54.
- Steffen, R., Freudenthaler, C., Gantner, Z., Schmidt, L. BPR: Bayesian Personalized Ranking from Implicit Feedback // Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. – Montreal, 2009. – P. 452–461.
- Jian, T., Qu, M., Wang, M., et al. LINE: Large-Scale Information Network Embedding // Proceedings of the 24th International Conference on World Wide Web. – Florence, 2015. – P. 1067–1077. – DOI: https://doi.org/10.1145/2736277.2741093.
- He, X., Liao, L., Zhang, H., et al. Neural Collaborative Filtering // Proceedings of the 26th International Conference on World Wide Web. – Perth, 2017. – P. 173–182. – DOI: https://doi.org/10.1145/3038912.3052569.
- Xue, J, Dai, X., Zhang, J., et al. Deep Matrix Factorization Models for Recommender Systems // Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. – Toronto, 2017. – P. 3203–3209. – DOI: https://doi.org/10.24963/ijcai.2017/447.
- Lei, Z., Lu, C., Jiang, F., et al. Spectral Collaborative Filtering // Proceedings of the 12th ACM Conference on Recommender Systems. – Vancouver, 2018. – P. 311–319. – DOI: https://doi.org/10.1145/3240323.3240343.
- He, X., Deng, K., Wang, X., et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation // Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. – Xian, 2020. – P. 639–648. – DOI: https://doi.org/1145/3397271.3401063.
- Dawen, L., Krishnan, R., Hoffman, M., Jebara, T. Variational Autoencoders for Collaborative Filtering // Proceedings of the 2018 World Wide Web Conference. – Lyon, 2018. – P. 689–698. – DOI: https://doi.org/10.1145/3178876.3186150.
- Yao, W., DuBois, C., Zheng, A., Ester, M. Collaborative Denoising Auto-Encoders for Top-N Recommender Systems // Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. – San Francisco, 2016. – P. 153–162. – DOI: https://doi.org/10.1145/2835776.2835837.
- Lobel, S., Li, C., Gao, J., Carin, L. RaCT: Toward Amortized Ranking-Critical Training for Collaborative Filtering // Proceedings of the Eighth International Conference on Learning Representations (ICLR). – Addis Ababa, 2020.
- Ning, X., Karypis, G. SLIM: Sparse Linear Methods for Top-N Recommender Systems // Proceedings of the IEEE 11th International Conference on Data Mining. – Vancouver, 2011. – P. 497–506. – doi: 10.1109/ICDM.2011.134.
- Mukund, D., Karypis, G. Item-Based Top-N Recommendation Algorithms // ACM Transactions on Information Systems. – 2004. – Vol. 22. – P. 143–177. – DOI: https://doi.org/10.1145/963770.963776.
- Wang, W., Xu, Y., Feng, F., et al. Diffusion Recommender Model // Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. – Taipei, 2023. – P. 832–841. – DOI: https://doi.org/1145/3539618.3591663.
- Zhao, W., Mu, S., Hou, Y., et al. RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms // Proceedings of the 30th ACM International Conference on Information & Knowledge Management. – Queensland, 2021. – P. 4653–4664. – DOI: https://doi.org/10.1145/3459637.3482016.
- Раев А.Г. Об одном способе определения весовых коэффициентов частных критериев при построении аддитивного интегрального критерия // Автоматика и телемеханика. – 1984. – Вып. 5. – С. 162–165. [Raev, A.G. On One Way tо Determine Weighting Coefficients of Particular Criteria in Development of an Integral Additive Criterion // Avtomatika i telemekhanika. – 1984. – No. 5. – P. 162–165. (In Russian)]
Қосымша файлдар
