Оптимизация энергопотребления предприятия с локальными генераторами и накопителями энергии

Обложка

Цитировать

Полный текст

Аннотация

В работе рассмотрена проблема оптимизации энергопотребления предприятия, использующего для энергоснабжения не только центральную энергосистему, но и локальные генераторы и накопители энергии. Для решения этой проблемы в работе предложен эвристический алгоритм оптимального планирования энергопотребления предприятия, включающий решение задачи линейного программирования. Для уменьшения риска существенного расхождения планового и фактического профилей энергопотребления в работе предлагается использовать алгоритм оптимального планирования энергопотребления со сдвигающимся шагом. Особенностью задачи оптимального планирования энергопотребления предприятия, решаемой в данной работе, является использование дополнительных условий, выполнение которых при достаточной мощности локальных генераторов и накопителей энергии приводит к сглаживанию оптимального профиля энергопотребления предприятия. Это облегчает реализацию такого профиля энергопотребления предприятия, так как не требует резкого изменения рабочих режимов, перенастройки оборудования и изменения интенсивности работы персонала предприятия. Предложенный авторами эвристический алгоритм позволяет реализовать выполнение дополнительных условий и при этом избежать сведения задачи оптимального планирования энергопотребления предприятия к задаче линейно-целочисленной оптимизации. В работе выполнена реализация примера оптимизации энергопотребления небольшого предприятия, на территории которого расположены два потребителя электроэнергии и различные локальные генераторы и накопители энергии.

Об авторах

Олег Юрьевич Марьясин

Ярославский государственный технический университет

Email: maryasin2003@list.ru
Ярославль

Артем Николаевич Плохотнюк

Ярославский государственный технический университет

Email: admin@nixson.ru
Ярославль

Список литературы

  1. МАРЬЯСИН О.Ю, ЛУКАШОВ А.И., СМИРНОВ Н.А. Про-гнозирование рыночных цен на электроэнергию и часов пи-ковой нагрузки для региона Российской Федерации // Управ-ление большими системами. – 2022. – Vol. 99. – P. 81–113.
  2. Цены на электроэнергию ”ТНС энерго Ярославль”.[Электронный ресурс]. – URL: https://yar.tns-e.ru/legal-entities/prices (дата обращения: 10.08.2023).
  3. Часы пиковой нагрузки от АТС. [Электронный ресурс]. –URL: https://www.atsenergo.ru/results/market/calcfacthour (да-та обращения: 10.08.2023).
  4. AFRAM A., JANABI-SHARIFI F. Theory and applications ofHVAC control systems – A review of model predictive control(MPC) // Building and Environment. – 2014. – Vol. 72. –P. 343–355.
  5. AHMAD A., KHAN A., JAVAID N., HUSSAIN H.M.ET AL. An Optimized Home Energy Management Systemwith Integrated Renewable Energy and Storage Resources //Energies. – 2017. – Vol. 10. – P. 2–35.
  6. AMJADY N., KEYNIA F. A new prediction strategy for pricespike forecasting of day-ahead electricity markets // AppliedSoft Computing. – 2011. – Vol. 11. – P. 4246–4256.
  7. ASCIONE F., BIANCO N., DE STASIO C., MAURO G.M. ETAL. Simulation-based model predictive control by the multi-objective optimization of building energy performance andthermal comfort // Energy and Buildings. – 2016. – Vol. 111. –P. 131–144.
  8. ASLAM S., HERODOTOU H., MOHSIN S.M., JAVAID N.ET AL. A survey on deep learning methods for power load andrenewable energy forecasting in smart microgrids // Renewableand Sustainable Energy Reviews. – 2021. – Vol. 144. – P. 1–23.
  9. BASANTES J.A., PAREDES D.E., LLANOS J.R., ORTIZ D.E.ET AL. Energy Management System (EMS) Based on ModelPredictive Control (MPC) for an Isolated DC Microgrid //Energies. – 2023. – Vol. 16. – P. 1–22.
  10. CANTILLO-LUNA S., MORENO-CHUQUEN R.,CELEITA D., ANDERS G. Deep and Machine LearningModels to Forecast Photovoltaic Power Generation //Energies. – 2023. – Vol. 16. – P. 1–24.
  11. CAO Z., HAN Y., WANG J., ZHAO Q. Two-stage energygeneration schedule market rolling optimisation of highly windpower penetrated microgrids // Int. Journal of Electrical Power& Energy Systems. – 2019. – Vol. 112. – P. 12–27.
  12. CHAUDHARY G., LAMB J.J., BURHEIM O.S., AUSTB B.Review of Energy Storage and Energy Management SystemControl Strategies in Microgrids // Energies. – 2021. – Vol. 14. –P. 1–25.
  13. CORINALDESI C., SCHWABENEDER D., LETTNER G.,AUER H. A rolling horizon approach for real-time tradingand portfolio optimization of end-user flexibilities // SustainableEnergy, Grids and Networks. – 2020. – Vol. 24. – P. 1–10.
  14. DESHMUKH M.K., DESHMUKH S.S. Modeling of hybridrenewable energy systems // Renewable and Sustainable EnergyReviews. – 2008. – Vol. 12. – P. 235–249.
  15. DILEEP G. A survey on smart grid technologies andapplications // Renewable Energy. – 2020. – Vol. 146. –P. 2589–2625.
  16. GILLES J. Empirical wavelet transform // IEEE Trans. onSignal Process. – 2013. – Vol. 61. – P. 3999–4010.
  17. GitHub - oemof/feedinlib [Электронный ресурс]. –URL: https://github.com/oemof/feedinlib (дата обращения:10.08.2023).
  18. HEMEIDA A.M., EL-AHMAR M.H., EL-SAYED A.M.,HASANIEN H.M. ET AL. Optimum design of hybrid wind/PVenergy system for remote area // Ain Shams EngineeringJournal. – 2020. – Vol. 11. – P. 11–23.
  19. ILBEIGI M., GHOMEISHI M., DEHGHANBANADAKI A.Prediction and optimization of energy consumtion in anoffice building using artificial neural network and a geneticalgorithm // Sustainable Cities and Society. – 2020. – Vol. 61. –P. 1–15.
  20. JIANG P., WANG Y., WANG J. Short-term wind speedforecasting using a hybrid model // Energy. – 2017. – Vol. 119. –P. 561–577.
  21. KIM W.; JEON Y.; KIM Y. Simulation-based optimization ofan integrated daylighting and HVAC system using the designof experiments method // Applied Energy. – 2016. – Vol. 15. –P. 666–674.
  22. LAGO J., DE RIDDER F., DE SCHUTTER B. Forecastingspot electricity prices: deep learning approaches and empiricalcomparison of traditional algorithms // Applied Energy. –2018. – Vol. 221. – P. 386–405.
  23. LAMNATOU C., CHEMISANA D., CRISTOFARI C. Smartgrids and smart technologies in relation to photovoltaics,storage systems, buildings and the environment // RenewableEnergy. – 2022. – Vol. 185. – P. 1376–1391.
  24. LEE J.Y., CHOI S.G. Linear programming based hourly peakload shaving method at home area // Int. Conf. on AdvancedCommunication Technology. – 2014. – P. 310–313.
  25. MAHARJAN I.K. Demand Side Management: LoadManagement, Load Profiling, Load Shifting, Residentialand Industrial Consumer, Energy Audit, Reliability, Urban,Semi-Urban and Rural Setting. – LAP Lambert AcademicPublishing, – 2010. – 116 p.
  26. MARYASIN O.YU., LUKASHOV A.I. Analyzing andForecasting Peak Load Hours // Int. Conf. on IndustrialEngineering, Applications and Manufacturing. – 2021. – P. 25–30.
  27. MARYASIN O.YU., LUKASHOV A.I. Comparing NeuralNetworks in Forecasting Market Electricity Prices and RegionalEnergy Consumption // Int. Conf. on Industrial Engineering,Applications and Manufacturing. – 2022. – P. 40–45.
  28. MARYASIN O.YU., LUKASHOV A.I. Developing a DigitalModel of an Electricity Consumer using Deep Learning // Int.Conf. on Control Systems, Mathematical Modeling, Automationand Energy Efficiency. – 2020. – P. 624–629.
  29. MARYASIN O.YU., LUKASHOV A.I. Optimal EnergyConsumption Scheduling for Enterprises with Local EnergySources // Lecture Notes in Electrical Engineering. – 2023. –Vol. 986. – P. 282–293.
  30. MARYASIN O.YU., LUKASHOV A.I. Optimizing the DailyEnergy Consumption of an Enterprise // Lecture Notes inElectrical Engineering. – 2022. – Vol. 857. – P. 370–382.
  31. MARYASIN O.YU., PLOHOTNYUK A. Day-Ahead PowerForecasting of Renewable Energy Sources Using NeuralNetworks and Machine Learning // Int. Conf. on IndustrialEngineering, Applications and Manufacturing. – 2023. – P. 130–135.
  32. RAJA S.C., DHARSSINI A.C.V., NESMALAR J.J.D.,KARTHICK T. Deployment of IoT-Based Smart Demand-SideManagement System with an Enhanced Degree of User Comfortat an Educational Institution // Energies. – 2023. – Vol. 16. –P. 1–24.
  33. REZAEI N., AHMADI A., DEIHIMI M.A. ComprehensiveReview of Demand-Side Management Based on Analysis ofProductivity: Techniques and Applications // Energies. – 2022. –Vol. 15. – P. 1–28.
  34. SANDHU H.S., FANG L., GUAN L. Forecasting day-aheadprice spikes for the Ontario electricity market // Electric PowerSystems Research. – 2016. – Vol. 141. – P. 450–459.
  35. SHAH A.S., NASIR H., FAYAZ M., LAJIS A. ET AL. AReview on Energy Consumption Optimization Techniques in IoTBased Smart Building Environments // Information. – 2019. –Vol. 10. – P. 1–34.
  36. SILVENTE J., KOPANOS G.M., PISTIKOPOULOS E.N.,ESPUNA A. A rolling horizon optimization framework forthe simultaneous energy supply and demand planning inmicrogrids // Applied Energy. – 2015. – Vol. 155. – P. 485–501.
  37. SINGH N., MOHANTY S.R., MISHRA K.K., NERI F.A Review of Electricity Price Forecasting Problem andTechniques in Deregulated Markets // Int. Journal of Economicsand Statistics. – 2017. – Vol. 5 – P. 101–112.
  38. TIAN C., MA J., ZHANG C., ZHAN P.A. Deep NeuralNetwork Model for Short-Term Load Forecast Based onLong Short-Term Memory Network and Convolutional NeuralNetwork // Energies. – 2018. – Vol. 11. – P. 1–13.
  39. UGURLU U., OKSUZ I., TAS O. Electricity Price ForecastingUsing Recurrent Neural Networks // Energies. – 2018. –Vol. 11. – P. 1–23.
  40. VORONIN V., NEPSHA F., KRASILNIKOV M. Short termforecasting peak load hours of regional power systems usingmachine learning methods // Cigre science & Engineering. –2023. – Vol. 29. – P. 1–18.
  41. WANG Y., WU L. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solarirradiation // Energy. – 2016. – Vol. 112. – P. 208–220.
  42. WERON R. Electricity price forecasting: A review of thestate-of-the-art with a look into the future // Int. Journal ofForecasting. – 2014. – Vol. 30. – P. 1030–1081.
  43. YADAV A.K., CHANDEL S. Solar radiation prediction usingArtificial Neural Network techniques: a review // Renewableand Sustainable Energy Reviews. – 2014. – Vol. 33. – P. 772–781.
  44. YANG F., LI W., LI C., MIAO Q. State-of-charge estimation oflithium-ion batteries based on gated recurrent neural network //Energy. – 2019. – Vol. 175. – P. 66–75.
  45. ZHANG Q., LIU B., ZHOU F., WANG Q. ET AL. State-of-charge estimation method of lithium-ion batteries based onlong-short term memory network // IOP Conf. Series: Earth andEnvironmental Science. – 2018. – P. 1–7.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).