Forecasting of the remaining useful life in conditions of small data sample
- Authors: Zadiran K.S.1, Shcherbakov M.V.1, Sai C.K.1
-
Affiliations:
- Volgograd state technical university
- Issue: No 102 (2023)
- Pages: 99-113
- Section: Control systems diagnosis and reliability
- URL: https://journals.rcsi.science/1819-2440/article/view/363794
- DOI: https://doi.org/10.25728/ubs.2023.102.6
- ID: 363794
Cite item
Full Text
Abstract
About the authors
Konstantin Sergeevich Zadiran
Volgograd state technical university
Author for correspondence.
Email: konstantin.zadiran@gmail.com
Volgograd
Maxim Vladimirovich Shcherbakov
Volgograd state technical university
Email: maxim.shcherbakov@vstu.ru
Volgograd
Cuong Kvong Sai
Volgograd state technical university
Email: svcuonghvktqs@gmail.com
Volgograd
References
- Гунина И. А., Шкарупета Е. В., Решетов В. В. Прорывное технологическое развитие промышленных комплексов в условиях цифровой трансформации // Инновационные кластеры цифровой экономики: теория и практика. – 2018. – С. 535–554.
- Куприяновский В. П., Намёт Д. Е., Дрожжинов В. И., Куприяновская Ю. В., Иванов М. О. Интернет вещей на промышленных предприятиях // International Journal of Open Information Technologies. – 2016. – №12. – С. 156–161.
- Лысенко С. В., Тен Э. В. Об оценке остаточного ресурса башенных кранов // Проблемы современной науки и образования. – 2016. – №1. – С. 98–102.
- Сай Ван Квонг, Щербаков М. В. Метод прогнозирования остаточного ресурса на основе обработки данных многообъектных сложных систем // Прикаспийский журнал: управление и высокие технологии. – 2019. – №1(45). – С. 33–44.
- Шилова Е. В., Дьяков А. Р. О феномене четвёртой промышленной революции и его влиянии на экономику и управление // Вестник Прикамского социального института. – 2018. – №3(81). – С. 86–95.
- A Grammar Of Data Manipulation – Dplur. – URL: https://dplyr.tidyverse.org (дата обращения: 03.04.2022).
- Cernuda C. On the relevance of preprocessing in predictive maintenance for dynamic systems // В кн.: Lughofer E., Sayed-Mouchaweh M. (Eds.). Predictive Maintenance in Dynamic Systems. – Cham: Springer, 2019. – P. 53–93.
- Cheng J. C., Chen W., Chen K., Wang Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms // Automation in Construction. – 2020. – Vol. 112. – P. 1–21.
- Che-Sheng H., Jehn-Ruey J. Remaining useful life estimation using long short-term memory deep learning // Proc. IEEE Int. Conf. on Applied System Invention (ICASI). – 2018. – P. 58–61.
- CRAN – Packages. – URL: https://cran.r-project.org/web/packages/ (дата обращения: 03.04.2022).
- Forecast Package – RDocumentation. – URL: https://www.rdocumentation.org/packages/forecast (дата обращения: 03.04.2022).
- Goebel K., Saha B., Saxena A., Celaya J. R., Christophersen J. P. Prognostics in battery health management // IEEE Instrumentation & Measurement Magazine. – 2008. – Vol. 8. – P. 33–40.
- Huang Z. Y., Xu Z. G., Wang W. H., Sun Y. X. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift // IEEE Trans. on Reliability. – 2015. – Vol. 64, No. 2. – P. 687–700.
- Identify and replace outliers in time series. – URL: https://pkg.robjhyndman.com/forecast/reference/tsoutliers.html (дата обращения: 03.04.2022).
- Lei Y., Li N., Gontarz S., Lin J., Radkowski S., Dybala J. A model-based method for remaining useful life prediction of machinery // IEEE Trans. on Reliability. – 2017. – Vol. 65. – P. 1314–1326.
- Li X., Ding Q., Sun J. Remaining useful life estimation in prognostics using deep convolution neural networks // Reliability Engineering & System Safety. – 2018. – Vol. 172. – P. 1–11.
- Liu J., Wang W., Ma F., Yang Y. B., Yang C. S. A data-model-fusion prognostic framework for dynamic system state forecasting // Engineering Applications of Artificial Intelligence. – 2012. – Vol. 25, No. 4. – P. 814–823.
- Patil S., Patil A., Handikherkar V., Desai S., Phalle V. M., Kazi F. S. Remaining useful life (RUL) prediction of rolling element bearing using random forest and gradient boosting technique // ASME Int. Mech. Eng. Congress and Exposition. – 2018. – P. 1–7.
- Ran Y., Zhou X., Lin P., Wen Y., Deng R. A survey of predictive maintenance: systems, purposes and approaches // IEEE Communications Surveys & Tutorials. – 2019. – P. 1–36.
- Shcherbakov M. V. A survey of forecast error measures // World Applied Sciences Journal. – 2013. – No. 24. – P. 171–176.
- Xiongzi C., Jinsong Y., Diyin T., Yingxun W. Remaining useful life prognostic estimation for aircraft subsystems or components: A review // Proc. 10th IEEE Int. Conf. on Electronic Measurement & Instruments (ICEMI). – 2011. – Vol. 2. – P. 94.
- Yan M., Wang X., Wang B., Chang M., Muhammad I. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model // ISA Transactions. – 2020. – Vol. 98. – P. 471–482.
- Yu J. Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter // Quality Engineering. – 2017. – Vol. 29. – P. 536–546.
- Zhang Z., Si X., Hu C., Ley Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods // European Journal of Operational Research. – 2018. – Vol. 271, No. 3. – P. 775–796.
Supplementary files


