Lorden's inequality and the rate of convergence of the distribution of one generalized erlang -- sevast'yanov queuing system
- Authors: Zverkina G.A.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 102 (2023)
- Pages: 15-43
- Section: Mathematical control theory
- URL: https://journals.rcsi.science/1819-2440/article/view/363790
- DOI: https://doi.org/10.25728/ubs.2023.102.2
- ID: 363790
Cite item
Full Text
Abstract
About the authors
Galina Aleksandrovna Zverkina
V.A. Trapeznikov Institute of Control Sciences of RAS
Author for correspondence.
Email: zverkina@gmail.com
Moscow
References
- Аничкин С. А. Склеивание процессов восстановления и его применение // Проблемы устойчивости стохастических моделей. Труды семинара. – 1984. – М.: ВНИИСИ. – С. 4–24.
- Борисов И. С. Методы одного вероятностного пространства для марковских процессов // Тр. Ин-та математики. – 1982. – Т. 1. – С. 4–18.
- Боровков А. А. Обобщенные процессы восстановления. – М.: Российская академия наук, 2020. – 453 с.
- Севастьянов Б. А. Формулы Эрланга в телефонии при произвольном законе распределения длительности разговора // Труды Третьего Всесоюзного математического съезда, Москва, июнь–июль 1956. – 1959. – Т. 4. – М.: Изд-во АН СССР. – С. 121–135.
- Севастьянов Б. А. Эргодическая теорема для марковских процессов и ее приложение к телефонным системам с отказами // Теория вероятн. и ее примен. – 1957. – Т. 2, вып. 1. – С. 106–116.
- Шелепова А. Д., Саханенко А. И. Об асимптотике вероятности невыхода неоднородного обобщенного процесса восстановления за невозрастающую границу // Сиб. электрон. матем. изв. – 2021. – Т. 18:2. – С. 1667–1688.
- Afanasyeva L. G., Tkachenko A. V. On the convergence rate for queueing and reliability models described by regenerative processes // Journal of Mathematical Sciences. – 2016. – Vol. 218, Issue 2. – P. 119–136.
- Asmussen S. Applied Probability and Queues. – New York: Springer, 2003.
- Chang J. T. Inequalities for the overshoot // The Annals of Applied Probability. – 1994. – Vol. 4(4). – P. 1223.
- Doeblin W. Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d’états // Rev. Math. de l’Union Interbalkanique. – 1938. – Vol. 2. – P. 77–105.
- Erlang A. K. Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges // Elektroteknikeren. – 1917. – Vol. 13. – P. 5–13 (in Danish); Engl. transl.: P. O. Elect. Eng. Journal. – 1918. – Vol. 10. – P. 189–197; Reprinted as: WEB-based edition by permission from the Danish Acad. Techn. Sci. at http://oldwww.com.dtu.dk/teletraffic/Erlang.html.
- Ferreira M. A., Andrade M. The M|G|∞ queue busy period distribution exponentiality // Journal of Applied Mathematics. – 2011. – Vol. 4, No. 3. – P. 249–260.
- Fortet R. Calcul des probabilités. – Paris: CNRS, 1950.
- Griffeath D. A maximal coupling for Markov chains // Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. – 1975. – Vol. 31, Iss. 2. – P. 95–106.
- Kalashnikov V. V. Mathematical Methods in Queuing Theory. – Amsterdam: Kluwer Academic Publishers, 1994.
- Kalimulina E., Zverkina G. On some generalization of Lorden’s inequality for renewal processes // arXiv.org. – Cornell: Cornell University Library. – 2019. – 1910.03381v1. – P. 1–5.
- Kato K. Coupling lemma and its application to the security analysis of quantum key distribution // Tamagawa University Quantum ICT Research Institute Bulletin. – 2014. – Vol. 4, No. 1. – P. 23–30.
- Lorden G. On excess over the boundary // The Annals of Mathematical Statistics. – 1970. – Vol. 41(2). – P. 520–527.
- Pechinkin A. V. On an invariant queueing system // Math. Operationsforsch. Statist. Ser. Optim. – 1983. – Vol. 14(3). – P. 433–444.
- Pechinkin A. V., Solovyev A. D., Yashkov S. F. A system with servicing discipline whereby the order of minimum remaining length is serviced first // Eng. Cybern. – 1979. – Vol. 17(5). – P. 38–45.
- Smith W. L. Renewal theory and its ramifications // J. Roy. Statist. Soc. – 1958. – Ser. B, Vol. 20:2. – P. 243–302.
- Stadje W. The busy period of the queueing system M|G|∞ // Journal of Applied Probability. – 1985. – Vol. 22. – P. 697–704.
- Stoyan D. Qualitative Eigenschaften und Abschätzungen stochastischer Modelle. – Berlin, 1977.
- Takács L. Introduction to the Theory of Queues. – Oxford University Press, 1962.
- Van Doorn E. A., Zeifman A. I. On the speed of convergence to stationarity of the Erlang loss system // Queueing Systems. – 2009. – Vol. 63. – P. 241–252.
- Veretennikov A. Yu. On rate of convergence to the stationary distribution in queueing systems with one serving device // Automation and Remote Control. – 2013. – Vol. 74, Iss. 10. – P. 1620–1629.
- Veretennikov A. Yu. On the rate of mixing and convergence to a stationary distribution in Erlang-type systems in continuous time // Problems Inf. Transmiss. – 2010. – Vol. 46(4). – P. 382–389.
- Veretennikov A. Yu. The ergodicity of service systems with an infinite number of servomechanisms // Математические заметки. – 1977. – Vol. 22(4). – P. 804–808.
- Veretennikov A., Butkovsky O. A. On asymptotics for Vaserstein coupling of Markov chains // Stochastic Processes and their Applications. – 2013. – Vol. 123(9). – P. 3518–3541.
- Veretennikov A. Yu., Zverkina G. A. Simple proof of Dynkin’s formula for single-server systems and polynomial convergence rates // Markov Proc. Rel. Fields. – 2014. – Vol. 20, Iss. 3. – P. 479–504; arXiv:1306.2359 [math.PR] (2013).
- Zverkina G. On strong bounds of rate of convergence for regenerative processes // Communications in Computer and Information Science. – 2016. – Vol. 678. – P. 381–393.
- Zverkina G. Lorden’s inequality and coupling method for backward renewal process // Proc. of XX Int. Conf. on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN–2017, Moscow). – 2017. – P. 484–491.
- Zverkina G. On strong bounds of rate of convergence for regenerative processes // Communications in Computer and Information Science. – 2016. – Vol. 678. – P. 381–393.
- Zverkina G. About some extended Erlang–Sevast’yanov queueing system and its convergence rate (English and Russian versions) // https://arxiv.org/abs/1805.04915; Фундаментальная и прикладная математика. – 2018. – №22, Iss. 3. – P. 57–82.
- Zverkina G., Kalimulina E. On generalized intensity function and its application to the backward renewal time estimation for renewal processes // Proc. of the 5th Int. Conf. on Stochastic Methods (ICSM–5, 2020). – М.: Изд-во РУДН, 2020. – P. 306–310.
Supplementary files


