Journal intersection graph: definition, modifications and a meaningful example

Cover Page

Cite item

Abstract

Bibliometric networks are defined by the relationships between publications and/or their authors, implemented on the basis of lists of co-authors and bibliographic lists. The mathematical models of such networks, which allow us to explore the communities of scientists and the connections between their works, are the corresponding bibliographic graphs. The paper defines a new type of bibliographic graph, the graph of journal intersections, based on the well–known binary operation of intersection of sets. The sets here are the sets of authors: the author belongs to the set of authors of the journal, if he has publications in this journal. The vertices of the intersection graph are journals, and connections between them arise if the intersections of the corresponding sets of authors are non-empty. Two modifications of the graph of journal intersections are proposed, taking into account the power of a subset of intersections and the similarity of sets of authors determined using the Jacquard coefficient. Data from 20 leading Russian mathematical journals are used as an example of the construction and study of the journal intersection graph and its modifications. As a result of the analysis, some results were obtained (the "closeness" or "openness" of the communities of authors and journals; a high correlation between the PageRank of graph vertices and the SCIENCE INDEX of journals in eLibrary), allowing a slightly different look at traditional approaches to ranking scientific journals used to assess scientific performance. The directions of further experimental and theoretical research are determined.

About the authors

Andrey Anatol'evich Pechnikov

Karelian Research Centre of the RAS

Email: pechnikov@krc.karelia.ru
Petrozavodsk

References

  1. БРЕДИХИН С.В., ЛЯПУНОВ В.М., ЩЕРБАКОВА Н.Г. Библиометрические сети научных статей и журналов. – Новосибирск: ИВМиМГ СО РАН, 2021. – 334 с.
  2. Научная электронная библиотека. [Электронный ре-сурс]. – Режим доступа: https://www.elibrary.ru.
  3. НОВИКОВ Д.А. Померяемся «Хиршами»? (Размышления о наукометрии) // Высшее образование в России. – 2015. – №. 2. – С. 5–13.
  4. О новом рейтинге журналов SCIENCE INDEX. [Элек-тронный ресурс]. – Режим доступа: https://elibrary.ru/projects/science_index/ranking_info.asp.
  5. Список журналов, входящих в базу данных RSCI. [Элек-тронный ресурс]. – Режим доступа: https://elibrary.ru/project_rsci.asp.
  6. An example of how intersecting sets define a graph. [Electronic resource]. – Available at: https://en.wikipedia.org/wiki/File:Intersection_graph.gif.
  7. BRIN S., PAGE L. The anatomy of a large-scale hypertextu-al web search engine // Computer networks and ISDN sys-tems. – 1998. – Vol. 30, Iss. 1–7. – P. 107–117.
  8. DE SOLLA PRICE D.J. Networks of scientific paper // Sci-ence. – 1965. – Vol. 149, Iss. 3683. – P. 510–515.
  9. FORTUNATO S. et al. Science of science // Science. – 2018. – Vol. 359, Iss. 6379. – P. 0185.
  10. HIRSCH J.E. Index for quantifying the results of scientific research of an individual // Proc. of the National Academy of Sciences. – 2005. – Vol. 102, No. 46. – P. 16569–16572.
  11. KAS M., CARLEY K.M., CARLEY L.R. Trends in science networks: understanding structures and statistics of scientific networks // Social Network Analysis and Mining. – 2012. – No. 2. – P. 169–187.
  12. KOSUB S. A note on the triangle inequality for the Jaccard distance // Pattern Recognition Letters. – 2019. – Vol. 120. – P. 36–38.
  13. LEVANDOWSKY M., WINTER D. Distance between sets // Nature. – 1971. – Vol. 234, No. 5323. – P. 34–35.
  14. MALLIAROS F.D., VAZIRGIANNIS M. Clustering and community detection in directed networks: A survey // Phys-ics Reports. – 2013. – Vol. 533, Iss. 4. – P. 95–142.
  15. NEWMAN M.E., GIRVAN M. Finding and evaluating community structure in networks // Physical Review E. – 2004. – Vol. 69(2). – P 026113.
  16. PERIANES-RODRIGUEZ A., WALTMAN L., VAN ECK N.J. Constructing bibliometric networks: A comparison between full and fractional counting // Journal of Informet-rics. – 2016. – Vol. 10, Iss. 4. – P. 1178–1195.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).