Calibration of a large array of ultrasound sensors

Cover Page

Cite item

Abstract

The paper presents a method for calibration of planar circular arrays of sensors used in ultrasound tomography, which enables the estimation of sensor coordinates and signal reception/transmission delays. The method uses an ultrasound wave propagation model and is based on the triangulation approach to identify the model parameters. At each iteration of the method, the estimates of coordinates and delays are recalculated separately from each other by solving systems of linear equations of low dimensionality. Simulation over synthetic data demonstrated high efficiency and accuracy of the approach: It is noise-resistant and is capable of operating in diverse conditions, including non-ideal model of ultrasound wave propagation. The proposed approach can be easily scaled to calibrate devices with large nuber of sensors, which makes it relevant to correct industrial practical implementation. This method can significantly improve the accuracy of ultrasound imaging results, making it a valuable tool for a variety of applications, such as medical diagnostics, robotics, etc.

About the authors

Oleg Nikolaevich Granichin

Saint Petersburg State University

Email: oleg_granichin@mail.ru
Saint Petersburg

Olga Aleksandrovna Granichina

Russian State Pedagogical University in the name of A. I. Herzen

Email: olga_granichina@mail.ru
Saint Petersburg

Stepan Artemovich Trofimov

Saint Petersburg State University

Email: steve.trofimov@gmail.com
Saint Petersburg

Pavel Sergeevich Shcherbakov

V.A. Trapeznikov Institute of Control Sciences, RAS, Moscow; Moscow Institute of Physics and Technology

Email: cavour118@mail.ru
Dolgoprudny

References

  1. ГРАНИЧИН О.Н., ЩЕРБАКОВ П.С. Об одном подходе к ре-шению задачи о калибровке большого массива ультразву-ковых датчиков // В Cб. материалов XIV Всероссийскогосовещания по проблемам управления (ВСПУ-2024), Россия,Москва, ИПУ РАН, 17–20 июня 2024. – 2024.
  2. CAMPI M., GARATTI S. Compression, generalization andlearning // Journal of Machine Learning Research. – 2023. –Vol. 24, No. 339. – P. 1–74.
  3. CS ´ AJI B.C., CAMPI M.C., WEYER E. Sign-perturbedsums: A new system identification approach for constructingexact non-asymptotic confidence regions in linear regressionmodels // IEEE Trans. on Signal Processing. – 2014. – Vol. 63,No. 1. – P. 169–181.
  4. DURIC N., LITTRUP P., POULO L. et al. Detection of breastcancer with ultrasound tomography: First results with theComputed Ultrasound Risk Evaluation (CURE) prototype //Medical physics. – 2007. – Vol. 34, No. 2. – P. 773–785.
  5. EROFEEVA V., GALYAMINA V., GRANICHIN O. et al.Detection of specific areas and densities for ultrasoundtomography // Cybernetics and Physics. – 2019. – Vol. 8,No. 3. – P. 121–127.
  6. FANG X., WU Y., SONG J. et al. Zone-shrinking Fresnel zonetravel-time tomography for sound speed reconstruction in breastUSCT // Sensors. – 2020. – Vol. 20, No. 19. – P. 5563.
  7. GRANICHIN O., EROFEEVA V., IVANSKIY Y. et al.Simultaneous perturbation stochastic approximation-based consensus for tracking under unknown-but-boundeddisturbances // IEEE Trans. on Automatic Control. – 2021. –Vol. 66, No. 8. – P. 3710–3717.
  8. GRANICHIN O., SCHERBAKOV P., MING Y. A Calibrationalgorithm for a large circular array of ultrasound transducers //Proc. of the Int. Workshop on Medical Ultrasound Tomography(MUST), 10-12 June 2024, Amsterdam, Netherlands. – 2024.
  9. GR ¨ OHL J., SCHELLENBERG M., DREHER K. et al. Deeplearning for biomedical photoacoustic imaging: A review //Photoacoustics. – 2021. – Vol. 22. – P. 100241.
  10. JOVANOVIC I. Inverse problems in acoustic tomography:theory and applications. – Suisse: EPFL, 2008. – 139 c.
  11. LENOX M.W., WISKIN J., LEWIS M. et al. Imagingperformance of quantitative transmission ultrasound // Journalof Biomedical Imaging. – 2015. – Vol. 2015. – P. 773–785.
  12. LIN L., ZHANG Y., HU P. et al. High-speed three-dimensionalphotoacoustic computed tomography for preclinical researchand clinical translation // Nature communications. – 2021. –Vol. 12. – P. 882.
  13. RAHAMAN J., PRAKASH R., RANJBARAN M. et al.Transducer misplacement compensation for in-lab-made 3Dphotoacoustic tomography systems using nature-inspiredalgorithms // Photons Plus Ultrasound: Imaging and Sensing. –2023. – Vol. 12379. – P. 123790W.
  14. RAJENDRAN P., PRAMANIK M. Deep-learning-based multi-transducer photoacoustic tomography imaging without radiuscalibration // Optics Letters. – 2023. – Vol. 46, No. 18. –P. 4510–4513.
  15. ROY O., JOVANOVI ´ C I., DURI ´ C N. et al. Robustarray calibration using time delays with application toultrasound tomography // Medical Imaging: UltrasonicImaging, Tomography, and Therapy. – 2011. – Vol. 7968. –P. 46–56.
  16. RUITER N.V., ZAPF M., HOPP T. et al. 3D ultrasoundcomputer tomography of the breast: A new era? // EuropeanJournal of Radiology. – 2012. – Vol. 81. – P. S133–S134.
  17. SASTRY K., ZHANG Y., HU P. et al. A method for thegeometric calibration of ultrasound transducer arrays witharbitrary geometries // Photoacoustics. – 2023. – Vol. 32. –P. 100520.
  18. SONG J., WANG S., ZHOU L. et al. A prototype system forultrasound computer tomography with ring array // 2nd IETInt. Conf. on Biomedical Image and Signal Processing (ICBISP-2017). – 2017. – P. 1–4.
  19. SONG J., ZHANG Q., ZHOU L. et al. Design andimplementation of a modular and scalable research platform forultrasound computed tomography // IEEE Trans. on Ultrasonics,Ferroelectrics and Frequency Control. – 2021. – Vol. 69,No. 1. – P. 62–72.
  20. WANG S., ZENG L., SONG J. et al. Variational modedecomposition for ultrasound computed tomography // MedicalImaging: Ultrasonic Imaging and Tomography. – 2020. –Vol. 11319, No. 19. – P. 140–145.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).