The asymptotics of moments and moment’s derivatives for excess distribution

Cover Page

Cite item

Abstract

The functioning of modern complex systems is characterized by various types of risks. Data analysis of such systems shows that data sets have characteristic properties: heavy distribution tails. An important issue is the impact of individual extreme events on the global behavior of the entire system too. The proposed article discusses classes of distributions with heavy tails, which are important in the theory of insurance claims and reliability theory: Gnedenko-Weibull distribution; Benktander I, II; Burr XII. The moment`s asymptotics have been derived for mean excess function and excess variance function especially for the heavy-tailed distributians. The paper studies in detail the error estimate for the asymptotic expansion of the mean excess function of the Gnedenko–Weibull distribution for any values of the shape parameter. There is a significant difference in the behavior of error estimates for values of the shape parameter less than one corresponding to the heavy tail of the Gnedenko –Weibull distribution. The values of the shape parameter are found for which the decompositions are accurate in particular. That is, the expansion has finite quantity members. Asymptotic expansions of derivatives of residual moments are proved for Gnedenko-Weibull; Benktander I, II; Burr XII distributions. The description of the behavior of the system as a region of attraction of the ultimate extreme state is also considered. These results serve as a tool for the applications to risk theory, reliability and extremal event.

About the authors

Leonid Aleksandrovich Ostrer

National University of Oil and Gas «Gubkin University»

Email: leonidostrer@gmail.com
Moscow

Vladimir Nikolaevich Rusev

National University of Oil and Gas «Gubkin University»

Email: rusev.v@gubkin.ru
Moscow

Alexander Vasil'evich Skorikov

National University of Oil and Gas «Gubkin University»

Email: skorikov.a@gubkin.ru
Moscow

References

  1. ДЕНЬГАЕВ А.В., РУСЕВ В.Н., СКОРИКОВ А.В. Иссле-дование средней остаточной наработки в модели Гне-денко – Вейбулла распределения отказов. Оценки оста-точного времени ресурса погружного насосного обору-дования // Сборник «Труды Российского государственно-го университета нефти и газа имени И.М. Губкина (НИУ)» – 2020. – №1(298). – С. 61–73.
  2. КАЛАШНИКОВ В.В., КОНСТАНТИНИДИС Д.Г. Веро-ятность разорения // Фундаментальная и прикладная математика – 1996. – Т. 2, вып. 4. – С. 1055–1100.
  3. РУМЯНЦЕВ А.С., МОРОЗОВ Е.В. Распределения с тя-желыми хвостами и их приложения. – Петрозаводск: Изд-во ПетрГУ, 2013. – 67 с.
  4. РУСЕВ В.Н., СКОРИКОВ А.В. Асимптотика риска страхования для требований, имеющих тяжелые хво-сты // Автоматизация и информатизация. ТЭК. – 2023. – № 11(604). – С. 35-40.
  5. ЭРДЕЙИ А. Асимптотические разложения. – М.: Физ-матгиз, 1962. – 127 с.
  6. BALKEMA A.A., DE HAAN L. Residual life time at great age // The Annals of probability. – 1974. – Vol.2, No. 5. – P. 792–804.
  7. BANJEVIC D. Remaining useful life in theory and practice. – 2009. – P. 337–349. – DOI: https://doi.org/10.1007/s00184-008-0220-5.
  8. BURNECKI K., HÄRDLE W., WERON R. An introduction to simulation of risk processes. Encyclopedia of Actuarial Science. – Chichester: Wiley, 2004. – P. 1–7.
  9. EMBRECHTS P., KLÜPPELBERG C., MIKOSCH T. Model-ling Extremal Events for Insurance and Finance. – Berlin: Springer-Verlag, 1997.
  10. FOSS S., KORSHUNOV D., ZACHARY S. An Introduction to Heavy-Tailed and Subexponential Distributions. – New York: Springer, 2011. – 123 p.
  11. GAD A.M., HAMEDANI G.G., SALEHABADI S.M. et al. The Burr XII-Burr XII Distribution: Mathematical Properties and Characterizations // Pak. J. Statist. – 2019. – Vol. 35(3). – P. 229–248.
  12. GHOSH S., RESNICK S. Discussion on mean excess plots // Stochastic Processes and their Applications. – 2010. – Vol. 120, Iss. 8. – P. 1492–1517.
  13. GNEDENKO B. On the limiting distribution of the maximum term in a random series // In: S.J. Kotz, Breakthroughs in Statistics. Volume 1. Foundations and Basic Theory. – New York, NY, USA: Springer Science + Business Media, 1993. – P. 185–225.
  14. GUPTA R.C. On the monotonic properties of residual vari-ance and their applications in reliabilit // Journal of Statisti-cal Planning and Inference. – 1987. – Vol. 16. – P. 329–335.
  15. MAHMOUD K. OKASHA M., MATTER Y. On the three-parameter Burr type XII distribution and its application to heavy tailed lifetime data // Journal of advances in mathe-matics. – 2015. – Vol. 10, No.4. – P. 3429–3442.
  16. MIKOSH T. Non-Life insurances mathematics. An introduc-tion with stochastic processes. – Berlin: Springer, 2004. – 235 p.
  17. OLAPADE A. On a six-parameter generalized Burr XII dis-tribution // arXiv:0806.1579v1 [math.ST]. – 2008. – DOI: https://doi.org/10.48550/arXiv.0806.1579.
  18. RINNE H. The Weibull Distribution: A handbook. − London, New York: Chapman and Hall/CRC Press, 2009. – 784 p.
  19. RODRIGES R.A. Guide to the Burr type XII distributions // Biometrika. – 1977. – Vol. 64. – P. 129–134.
  20. RUSEV V., SKORIKOV A. Residual Life Time of the Gnedenko Extreme – Value Distributions. Asymptotic Behav-ior and Applications // In: Recent Developments in Stochas-tic Methods and Applications / Eds.: Shiryaev A.N., Samouylov K.E., Kozy¬rev D.V. – Springer Proceedings in Mathematics and Statistics. – 2021. – Vol. 371. – P. 292–305.
  21. RUSEV V., SKORIKOV A. Asymptotics of Moments for the Remaining Time of Heavy-Tail Distributions // Comput. Sci. Math. Forum. – 2023. – Vol.7(1), No. 52. – DOI: https://doi.org/10.3390/IOCMA2023-14435.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).