Sensor data integration algorithm for state estimation of autonomous robots in an intelligent transport system

Cover Page

Cite item

Abstract

This paper deals with the development and experimental testing of a sensor data integration algorithm for estimating the state of autonomous objects in intelligent transport systems (ITS). The main attention is paid to ensuring accuracy and reliability of navigation in complex and dynamically changing conditions of urban environment, where traditional navigation methods, such as GPS, may be insufficiently effective. The proposed algorithm combines data from different sensors (LIDAR, cameras, inertial sensors, GPS) and ITS elements to provide accurate position and trajectory estimation of autonomous systems. Experimental results obtained in simulation and field tests confirmed high accuracy and adaptability of the algorithm, which makes it promising for application in autonomous vehicles. The paper also discusses the possibilities of further development of machine learning algorithms and data protection methods to improve the efficiency and safety of navigation systems in ITS.

About the authors

Peter Mikhaylovich Trefilov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: petertrfi@ipu.ru
Moscow

References

  1. ЖАРКО Е.Ф., ПРОМЫСЛОВ В.Г., ИСХАКОВ А.Ю. и др. Кибербезопасность беспилотных транспортных средств. Архитектура. Методы проектирования. – М.: Радиотехника, 2021. – 160 с.
  2. ROMANOVA M.A., GALIN R.R., TREFILOV P.M. Applica-tion of IoT technologies for automation of management in agriculture // IOP Conference Series: Earth and Environmen-tal Science. – Krasnoyarsk: IOP Publishing Ltd, 2019. – Vol. 315. – DOI: https://iopscience.iop.org/article/10.1088/1755-1315/315/3/032032/pdf.
  3. ABDI B., AL HAGE J., EL BADAOUI EL NAJJAR M. et al. Multi-Robot Autonomous Navigation System Using Informa-tional Fault Tolerant Multi-Sensor Fusion with Robust Closed Loop Sliding Mode Control // 21st International Con-ference on Information Fusion (FUSION) – 2018. – P. 2258–2265 – doi: 10.23919/ICIF.2018.8455787.
  4. BASHAR Md. S., ASHIKUZZAMAN A.K.M., RAFID M. et al. Recent Advancements in Visual-Inertial Simultaneous Localization and Mapping (VIO-SLAM) for Autonomous Ve-hicles: A Review // Int. Journal of Engineering Research & Technology (IJERT). – May, 2023. – Vol. 12, Iss. 05. – P. 280–284.
  5. DURRANT-WHYTE H., BAILEY T. Simultaneous Localiza-tion and Mapping: Part I // IEEE Robotics & Automation Magazine. – 2006. – Vol. 13, No. 2. – P. 99–110. – doi: 10.1109/MRA.2006.1638022.
  6. GOSMAN C., DOBRE C., POP F. Privacy-Preserving Data Aggregation in Intelligent Transportation Systems // IFIP/IEEE Symposium on Integrated Network and Service Management (IM-2017), Lisbon, Portugal, 2017. – P. 1059–1064. – doi: 10.23919/INM.2017.7987438.
  7. KALMAN R. A New Approach to Linear Filtering and Pre-diction Problems // Journal of Basic Engineering. – 1960. – P. 35–45.
  8. KENDALL A., GRIMES M. End-to-End Learning of Geome-try and Context for Deep Stereo Regression // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 2017. – P. 678–692.
  9. LABBE M., MICHAUD F. RTAB-Map as an Open-Source Lidar and Visual SLAM Library for Large-Scale and Long-Term Online Operation // Journal of Field Robotics. – 2021. – Vol. 36, No. 3. – P. 545–564.
  10. MADAAN G., KUMAR A., BHUSHAN B. Blockchain As-sisted Secure Data Sharing in Intelligent Transportation Sys-tems // Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks – 2022. – P. 1834–1843.
  11. MARTI E., GARCIA J., MOLINA J. Opportunistic Multi-Sensor Fusion for Robust Navigation in Smart Environments // User-Centric Technologies and Applications – 2011. – Vol. 94. – P. 1–10.
  12. SHLADOVER S., RIZZETTO C. Automated Vehicles and the Smart Transportation System // IEEE Trans. on Intelligent Transportation Systems. – 2013. – P. 23–33.
  13. THRUN S. Probabilistic Robotics. – MIT Press, 2005. – P. 45–78.
  14. XIAO J., LIU Y., ZOU Y. et al. An Efficient Elliptic Curve Cryptography-Based Secure Communication with Privacy Preserving for Autonomous Vehicle // Journal of Advanced Transportation. – 2024. – Vol. 2024, No. 5808088. – P. 1–10. – doi: 10.1155/2024/5808088.
  15. XU M., CHEN S., HUANG S. et al. Invariant EKF Based 3D Active SLAM with Exploration Task. // Springer Nature – 2022. – P. 1–14.
  16. BITHAS P. Special Issue "Challenges in V2X Communica-tions for Cooperative Autonomous Driving." //Signal Pro-cessing – 2019. – P. 1–5.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).