Constructing non-elementary quasilinear regressions using mathematical programming apparatus
- Authors: Bazilevskiy M.P.1
-
Affiliations:
- Irkutsk State Transport University
- Issue: No 112 (2024)
- Pages: 168-186
- Section: Control of social-economic systems
- URL: https://journals.rcsi.science/1819-2440/article/view/284215
- ID: 284215
Cite item
Abstract
In non-elementary quasilinear regressions, the explanatory variables are first transformed using elementary functions, after which the pairs of resulting factors are again transformed using the non-elementary functions min and max. Such models are nonlinear in both factors and parameters, so even their estimation seems to be a complex computational task. And if the composition of the variables included in the model, as well as their elementary and non-elementary transformations, is unknown, then the complexity of the problem increases significantly. This study aims to solve this problem. Instead of labor-intensive exhaustive search procedures, a well-developed mathematical programming apparatus has been used recently. The method for constructing non-elementary quasilinear regressions is formalized as a mixed 0-1 integer linear programming problem. The proposed method is implemented in a special computer program. Its advantage is that the user can regulate the number of transformed variables during the construction process, so the program can be used both for solving simple control problems on ordinary personal computers and for processing large data arrays using cloud services. Non-elementary quasilinear regressions can be used to solve control problems in technical, socio-economic, medical and other systems.
About the authors
Mikhail Pavlovich Bazilevskiy
Irkutsk State Transport University
Email: mik2178@yandex.ru
Irkutsk
References
- БАЗИЛЕВСКИЙ М.П. Метод построения неэлементар-ных линейных регрессий на основе аппарата математи-ческого программирования // Проблемы управления. – 2022. – №4. – С. 3–14.
- БАЗИЛЕВСКИЙ М.П. Отбор информативных операций при построении линейно-неэлементарных регрессионных моделей // Int. Journal of Open Information Technologies. – 2021. – Т. 9, №5. – С. 30–35.
- БАЗИЛЕВСКИЙ М.П. Оценивание линейно-неэле¬мен-тарных регрессионных моделей с помощью метода наименьших квадратов // Моделирование, оптимизация и информационные технологии. – 2020. – Т. 8, №4(31).
- БАЗИЛЕВСКИЙ М.П. Программа построения вполне интерпретируемых элементарных и неэлементарных квазилинейных регрессионных моделей // Труды Инсти-тута системного программирования РАН. – 2023. – Т. 35, №4. – С. 129–144.
- БАЗИЛЕВСКИЙ М.П. Технология построения вполне интерпретируемых квазилинейных регрессионных моде-лей // Прикладная математика и вопросы управления. – 2024. – №1. – С. 123–138.
- КЛЕЙНЕР Г.Б. Производственные функции: Теория, ме-тоды, применение. – М.: Финансы и статистика, 1986. – 239 с.
- НОСКОВ С.И. Технология моделирования объектов с нестабильным функционированием и неопределенно-стью в данных. – Иркутск: РИЦ ГП «Облинформпечать», 1996. – 320 с.
- AHMAD S.A., RAFIQ S.K., AHMED H.U. et al. Innovative soft computing techniques including artificial neural network and nonlinear regression models to predict the compressive strength of environmentally friendly concrete incorporating waste glass powder // Innovative Infrastructure Solutions. – 2023. – Vol. 8, No. 4. – P. 119.
- CHEN D., HU F., NIAN G. et al. Deep residual learning for nonlinear regression // Entropy. – 2020. – Vol. 22, No. 2. – P. 193.
- FENG Y., LIU Q., YAO Q. et al. Model averaging for non-linear regression models // Journal of Business & Economic Statistics. – 2022. – Vol. 40, No. 2. – P. 785–798.
- JAF D.K.I., ABDALLA A., MOHAMMED A.S. et al. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rub-ber on the compressive strength of concrete // Heliyon. – 2024. – Vol. 10, No. 4.
- KONNO H., YAMAMOTO R. Choosing the best set of vari-ables in regression analysis using integer programming // Journal of Global Optimization. – 2009. – Vol. 44. – P. 273–282.
- MAZUMDER R., RADCHENKO P., DEDIEU A. Subset se-lection with shrinkage: Sparse linear modeling when the SNR is low // Operations Research. – 2023. – Vol. 71, No. 1. – P. 129–147.
- MILLER A. Subset selection in regression. – Chapman and hall/CRC, 2002.
- MOLNAR C. Interpretable machine learning. – Lulu.com, 2020.
- MONTGOMERY D.C., PECK E.A., VINING G.G. Introduc-tion to linear regression analysis. – John Wiley & Sons, 2021.
- OMOGOROYE O.O., OLANIYI O.O., ADEBIYI O.O. et al. Electricity consumption (kW) forecast for a building of inter-est based on a time series nonlinear regression model // Asian Journal of Economics, Business and Accounting. – 2023. – Vol. 23, No. 21. – P. 197–207.
- SHARIFANI K., AMINI M. Machine learning and deep learning: A review of methods and applications // World In-formation Technology and Engineering Journal. – 2023. – Vol. 10, No. 7. – P. 3897–3904.
- TUFANER F., DEMIRCI Y. Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural net-work and nonlinear regressions models // Clean Technolo-gies and Environmental Policy. – 2020. – Vol. 22. – P. 713–724.
- WEN L., LI Y., CHAI J. Multiple nonlinear regression mod-els for predicting deformation behavior of concrete-face rockfill dams // Int. Journal of Geomechanics. – 2021. – Vol. 21, No. 2. – P. 04020253.
- WOLSEY L.A. Integer programming. – John Wiley & Sons, 2020.
- YANG G.R., WANG X.J. Artificial neural networks for neu-roscientists: a primer // Neuron. – 2020. – Vol. 107, No. 7. – P. 1048–1070.
- YANG Y., DU L., LI Q. et al. Vibration prediction and analysis of the main beam of the TBM based on a multiple linear regression model // Scientific Reports. – 2024. – Vol. 14, No. 1. – P. 3498.
- ZHANG Z., YIN Z., CHEN Y. et al. Evaluation and predic-tion of water resources carrying capacity using a multiple linear regression model in Taizhou City, China // Human and Ecological Risk Assessment: An International Journal. – 2023. – Vol. 29, No. 2.– P. 553–570.
- ZITAR R.A., MOHSEN A., SEGHROUCHNI A.E. et al. In-tensive review of drones detection and tracking: linear kal-man filter versus nonlinear regression, an analysis case // Archives of Computational Methods in Engineering. – 2023. – Vol. 30, No. 5. – P. 2811–2830.
Supplementary files


