The influence of ranking algorithms, bots and content moderation on opinion formation in social networks
- 作者: Gubanov D.A.1, Chkhartishvili A.G.1
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- 期: 编号 112 (2024)
- 页面: 109-128
- 栏目: Networking in control sciences
- URL: https://journals.rcsi.science/1819-2440/article/view/284213
- ID: 284213
如何引用文章
全文:
详细
作者简介
Dmitry Gubanov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: dmitry.a.g@gmail.com
Moscow
Alexander Chkhartishvili
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: sandro_ch@mail.ru
Moscow
参考
- ГУБАНОВ Д.А., НОВИКОВ Д.А. Модели совместной динамики мнений и действий в онлайновых социальных сетях. Ч. 2. Линейные модели // Проблемы управления. – 2023. – №3. – С. 40–64.
- ГУБАНОВ Д.А., ПЕТРОВ И.В. О модели поляризации мнений в социальных сетях // Материалы 12-й Между-нар. конф. «Управление развитием крупномасштабных систем» (MLSD'2019), Москва, ИПУ РАН. – М., 2019. – С. 1200–1202.
- ГУБАНОВ Д.А., ПЕТРОВ И.В., ЧХАРТИШВИЛИ А.Г. Многомерная модель динамики мнений в социальных се-тях: индексы поляризации // Проблемы управления. – 2020. – №3. – С. 26–33.
- НОВИКОВ Д.А. Модели динамики психических и пове-денческих компонент деятельности в коллективном принятии решений // Управление большими системами. – 2020. – Вып. 85. – С. 206–237.
- ЧХАРТИШВИЛИ А.Г. Задача нахождения медианного предпочтения индивидов в стохастической модели // Автоматика и телемеханика. – 2021. – №5. – С. 139–150.
- BANISCH S., OLBRICH E. An argument communication model of polarization and ideological alignment // arXiv:1809.06134. – 2018.
- CHKHARTISHVILI A.G., GUBANOV D.A. A Study on the Control of the Dynamics of Multidimensional Opinions in Social Networks // Proc. of the 14th Int. Conf. "Management of Large-Scale System Development" (MLSD-2021). – Mos-cow: IEEE. – 2021. – doi: 10.1109/MLSD52249.2021.9600250.
- CHKHARTISHVILI A.G., GUBANOV D.A. Forming Opin-ions in Social Networks: The Confrontation of Several In-formation Sources // Proc. of the 15th Int. Conf. Manage-ment of Large-Scale System Development (MLSD-2022). – Moscow: IEEE. – 2022. – doi: 10.1109/MLSD55143.2022.9934221.
- CHKHARTISHVILI A.G., GUBANOV D.A. The Impact of Online Social Network Algorithms on User Opinion For-mation // Proc. of the 16th Int. Conf. Management of Large-Scale System Development (MLSD-2023). – Moscow: IEEE. – 2023. – doi: 10.1109/MLSD58227.2023.10303932.
- CHKHARTISHVILI A.G., GUBANOV D.A., NOVIKOV D.A. Social Networks: Models of information in-fluence, control and confrontation. – Cham, Switzerland: Springer International Publishing, 2019. – 158 p.
- DEGROOT M.H. Reaching a Consensus // Journal of Amer-ican Statistical Association. – 1974. – No. 69. – P. 118–121.
- FLACHE A., MÄS M. et al. Models of Social Influence: Towards the Next Frontiers // The Journal of Artificial Socie-ties and Social Simulation. – 2017. – Vol. 20, No. 4. – URL: https://jasss.soc.surrey.ac.uk/20/4/2.html.
- HUSZÁR F. et al. Algorithmic amplification of politics on Twitter // Proc. of the National Academy of Sciences. – 2022. – Vol. 119, No. 1. – e2025334119.
- KOZITSIN I.V. A general framework to link theory and empirics in opinion formation models // Scientific Reports. – 2022. – Vol. 12, No. 1. – URL: https://www.nature.com/articles/s41598-022-09468-3.
- MÄS M., FLACHE A. Differentiation without distancing. Explaining bi-polarization of opinions without negative in-fluence // PloS one. – 2013. – Vol. 8, No. 11. – e74516.
- PERRA N., ROCHA L.E. C. Modelling opinion dynamics in the age of algorithmic personalization // Scientific reports. – 2019. – Vol. 9, No. 1. – P. 1–11.
- PETROV A.P., LEBEDEV S.A. Online Political Flashmob: The Case of 632305222316434 // Computational Mathemat-ics and Information Technologies. – 2019. – No. 1. – P. 17–28.
- ROSSI W.S., POLDERMAN J.W., FRASCA P. The Closed Loop Between Opinion Formation and Personalized Rec-ommendations // IEEE Trans. on Control of Network Sys-tems. – 2021. – Vol. 9, No. 3. – P. 1092–1103.
补充文件
