Study of two-dimensional marked mmpp under the high rate limit condition

Cover Page

Cite item

Abstract

This paper considers a mathematical model of a heterogeneous flow in the form of a two-dimensional marked MMPP. The study of such models is necessary to analyze the load on multimodal systems. Multimodal interfaces are capable of processing multiple natural human input methods, each of which requires specific resources for recognition, processing and transmission. To design such systems, it is necessary to estimate the required resources. These estimates can be based on the joint probability distribution of the number of calls of each type over a certain period of time. The paper proposes an asymptotic method to estimating the two-dimensional probability distribution of the number of arrivals in a high-intensity marked Markov Modulated Process. The limiting condition of high intensity is determined by the parameter of the rate of arrivals in the process over a certain time. The asymptotic analysis method is carried out in two stages. At the first stage, the parameters are obtained that determine the asymptotic mean numbers of arrivals of the first and second types that occurred in the high-intensity flow. At the second stage, the parameters are found that determine the asymptotic variances and the covariance of the number of events of the first and second types. It is shown that the limiting distribution of the number of events that occurred in a high-intensity marked MMPP is a two-dimensional Gaussian. The resulting formulas for finding the distribution and its characteristics have fairly simple expressions, the unknowns in which are found by solving systems of linear equations.

About the authors

Svetlana Vladimirovna Paul

Tomsk State University

Email: paulsv82@mail.ru
Tomsk

Anatoly Andreevich Nazarov

Tomsk State University

Email: nazarov.tsu @gmail.com
Tomsk

Ivan Leonidovich Lapatin

Tomsk State University

Email: ilapatin@mail.ru
Tomsk

References

  1. БАСОВ О.О., ПАКУЛОВА Е.А., САИТОВ И.А. Методо-логические основы построения интеллектуальных инфо-коммуникационных систем: монография. – Орёл : Ака-демия ФСО России, 2020. – 272 с.
  2. ВИШНЕВСКИЙ В.М., ДУДИН А.Н., КЛИМЕНОК В.И. Стохастические системы с коррелированными потока-ми. Теория и применение в телекоммуникационных се-тях. – М.: ТЕХНОСФЕРА, 2018. – 564 с.
  3. ГНЕДЕНКО Б.В., КОВАЛЕНКО И.Н. Введение в теорию массового обслуживания : учебное пособие. 4-е изд. – М.: изд-во ЛКИ, 2007. – 400 с.
  4. КАГИРОВ И.А., РЮМИН Д.А., АКСЁНОВ А.А. и др. Мультимедийная база данных жестов русского жесто-вого языка в трехмерном формате // Вопросы языкозна-ния. – 2020. – №1 – C. 104–123.
  5. МОИСЕЕВ А.Н., НАЗАРОВ А.А. Бесконечнолинейные системы и сети массового обслуживания. – Томск: Изд-во НТЛ, 2015. – 240 с.
  6. НАУМОВ В.А., САМУЙЛОВ К.Е. О марковских и раци-ональных потоках случайных событий. I // Информатика и ее применение. – 2020. – Т. 14, вып. 3. – С. 13–19.
  7. НАУМОВ В.А., САМУЙЛОВ К.Е. О марковских и раци-ональных потоках случайных событий. II // Информати-ка и ее применение. – 2020. – Т. 14, вып. 4. – С. 37–46.
  8. РОНЖИН А.Л., КАРПОВ А.А. Проектирование интер-активных приложений с многомодальным интерфей-сом // Доклады ТУСУРа. – 2010 – №1(21), часть 1 – С. 124–127.
  9. ЮСУПОВ Р.М., РОНЖИН А.Л. От умных приборов к интеллектуальному пространству // Вестник Россий-ской академии наук. – 2010. – Т. 80, №1. – С. 45–51.
  10. BAI X., JIN S. Performance analysis of an energy-saving strategy in cloud data centres based on a MMAP[K]/M[K]/N1 + N2 non-preemptive priority queue // Future Gener. Comput. Syst. – 2022. – No. 136. – P. 205–220.
  11. DUDIN A.N., DUDIN S.A., DUDINA O.S. Randomized Threshold Strategy for Providing Flexible Priority in Multi-Server Queueing System with a Marked Markov Arrival Process and Phase-Type Distribution of Service Time // Mathematics. – 2023. – No. 11. – P. 2669.
  12. DUDIN A.N., KLIMENOK V.I., VISHNEVSKY V.M. The Theory of Queuing Systems with Correlated Flows. – Spring-er Nature: Cham, Switzerland, 2020. – 410 p.
  13. HE Q.M. Queues with marked customers // Adv. Appl. Prob-ab. – 1996. – No. 28. – P. 567–587.
  14. HE Q.M. Fundamentals of Matrix-Analytic Methods. – Springer: New York, NY, USA, 2014. – 349 p.
  15. KLIMENOK V., DUDIN A., VISHNEVSKY V. Priority mul-ti-server queueing system with heterogeneous customers // Mathematics. – 2020. – No. 8. – P. 1501.
  16. NAUMOV V., GAIDAMAKA Y., YARKINA N. et al. Ma-trix and Analytical Methods for Performance Analysis of Telecommunication Systems. – Springer: Berlin/Heidelberg, Germany, 2021. – 305 p.
  17. NAZAROV A., MOISEEV A., LAPATIN I. et al. Real Wait-ing Time in Single-Server Resource Queue with Markovian Arrival Process // Communications in Computer and Infor-mation Science. – 2023. – Vol. 1803. – P. 116–125.
  18. NAZAROV A., PAUL S., PHUNG-DUC T. et al. Analysis of Tandem Retrial Queue with Common Orbit and MMPP Incoming Flow // Lecture Notes in Computer Science. – 2022. – Vol. 13766. – P 270–283.
  19. NAZAROV A., PHUNG-DUC T., PAUL S. et al. Two-Way Communication Retrial Queue with Markov Modulated Pois-son Input and Multiple Types of Outgoing Calls // Commu-nications in Computer and Information Science. – 2022. – Vol. 1748. – P. 370–381.
  20. RAJ R., JAIN V. Optimization of traffic control in MMAP[2]/PH[2]/S priority queueing model with PH retrial times and the preemptive repeat policy // J. Ind. Manag. Op-tim. – 2023. – No. 19. – P 2333–2353.
  21. SAMOUYLOV K., DUDINA O., DUDIN A. Analysis of Multi-Server Queueing System with Flexible Priorities // Mathematics. – 2023. – No. 11. – P. 1040.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).