Computer simulation of conductivity fluctuations in a dynamic percolation model based on resistive networks
- Autores: Kochkurov L.A.1, Zimnyakov D.A.1
-
Afiliações:
- Yuri Gagarin State Technical University of Saratov
- Edição: Volume 25, Nº 1 (2025)
- Páginas: 106-112
- Seção: Nanotechnologies, Nanomaterials and Metamaterials
- URL: https://journals.rcsi.science/1817-3020/article/view/357281
- DOI: https://doi.org/10.18500/1817-3020-2025-25-1-106-112
- EDN: https://elibrary.ru/VZFIRB
- ID: 357281
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Leonid Kochkurov
Yuri Gagarin State Technical University of Saratov
ORCID ID: 0000-0002-3360-8878
Código SPIN: 9274-4584
77, Politechnicheskaya str., Saratov, 410054, Russia
Dmitry Zimnyakov
Yuri Gagarin State Technical University of Saratov
ORCID ID: 0000-0002-9787-7903
Código SPIN: 1918-5220
77, Politechnicheskaya str., Saratov, 410054, Russia
Bibliografia
- Saberi A. A. Recent advances in percolation theory and its applications. Physics Reports, 2015, vol. 578, pp. 1–32. https://doi.org/10.1016/j.physrep.2015.03.003
- Li M., Liu R.-R., Lü L., Hu M.-B., Xu S., Li Y. Z. Percolation on complex networks: Theory and application. Physics Reports, 2021, vol. 907, pp. 1–68. https://doi.org/10.1016/j.physrep.2020.12.003
- Xu X., Wang J., Lv J.-P., Deng Y. Simultaneous analysis of three-dimensional percolation models. Frontiers of Physics, 2014, vol. 9, pp. 113–119. https://doi.org/10.1007/s11467-013-0403-z
- Liu J., Regenauer-Lieb K. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling. Physical Review E, 2011, vol. 83, iss. 1, art. 016106. https://doi.org/10.1103/PhysRevE.83.016106
- Hunt A., Ewing R., Ghanbarian B. Percolation theory for flow in porous media. Cham, Springer, 2014, XXIV+447 p. https://doi.org/10.1007/978-3-319-03771-4
- Rammal R., Tannous C., Tremblay A. M. S. 1/f noise in random resistor networks: Fractals and percolating systems. Physical Review A, 1985, vol. 31, iss. 4, pp. 2662–2671. https://doi.org/10.1103/PhysRevA.31.2662
- Rammal R., Tannous C., Breton P., Tremblay A. -M. S. Flicker (1/ f) noise in percolation networks: A new hierarchy of exponents. Physical Review Letters, 1985, vol. 54, iss. 15, pp. 1718–1721. https://doi.org/10.1103/PhysRevLett.54.1718
- Blumenfeld R., Meir Y., Aharony A., Aharony A., Harris A. B. Resistance fluctuations in randomly diluted networks. Physical Review B, 1987, vol. 35, iss. 7, pp. 3524–3535. https://doi.org/10.1103/PhysRevB.35.3524
- Garfunkel G. A., Alers G. B., Weissman M. B., Mochel J. M., VanHarlingen D. J. Universal-Conductance-Fluctuation 1/f Noise in a Metal-Insulator Composite. Physical Review Letters, 1988, vol. 60, iss. 26, pp. 2773–2776. https://doi.org/10.1103/PhysRevLett.60.2773
- Stephany J. F. Frequency limits of 1/f noise. Journal of Physics: Condensed Matter, 2000, vol. 12, iss. 11, pp. 2469–2483. https://doi.org/10.1088/0953-8984/12/11/313
- Nandi U. N., Mukherjee C. D., Bardhan K. K. 1/f noise in nonlinear inhomogeneous systems. Physical Review B, 1996, vol. 54, iss. 18, pp. 12903–12914. https://doi.org/10.1103/PhysRevB.54.12903
- Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-insulator transition in interelectrode bridge-like ensembles of anatase nanoparticles under a long-term action of the direct current. Nanomaterials, 2023, vol. 13, iss. 9, art. 1490. https://doi.org/10.3390/nano13091490
- Kochkurov L. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Klimova A. A., Zimnyakov D. A. Degradation of conductivity of low-dimensional nanostructured semiconductor layers under long-term dc current flow. Izvestiya of Saratov University. Physics, 2024, vol. 24, iss. 1, pp. 41–51 (in Russian). https://doi.org/10.18500/1817-3020-2024-24-1-41-51, EDN: AUQNBD
- Lust L. M., Kakalios J. Computer simulations of conductance noise in a dynamical percolation resistor network. Physical Review E, 1994, vol. 50, iss. 5, pp. 3431–3435. https://doi.org/10.1103/PhysRevE.50.3431
- Gallyamov S. R., Melchukov S. A. Percolation model of two-phase lattice conductivity: Theory and computer experiment. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2010, iss. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
- Bunde A., Havlin S., eds. Fractals and disordered systems. Berlin, Springer, 2012, XXII+408 р. https://doi.org/10.1007/978-3-642-84868-1
- Feder J. Fractals. Physics of Solids and Liquids. New York, Springer, 2013. XXVI+284 p. https://doi.org/10.1007/978-1-4899-2124-6
- Herrmann H. J., Hong D. C., Stanley H. E. Backbone and elastic backbone of percolation clusters obtained by the new method of “burning”. Journal of Physics A: Mathematical and General, 1984, vol. 17, iss. 5, pp. L261–L266. https://doi.org/10.1088/0305-4470/17/5/008
Arquivos suplementares

