Computer simulation of conductivity fluctuations in a dynamic percolation model based on resistive networks

封面

如何引用文章

全文:

详细

Background and Objectives: Percolation models are widely used in the analysis of electrical, thermophysical and other properties of various systems with disordered structure, which causes their wide application in the theoretical consideration of near-critical behavior of such systems in various fields of modern science and technology. Studies of noise processes, in particular noise, in the context of percolation networks have significantly extended the understanding of how fluctuations can arise in this kind of systems. An important aspect that has often received less attention in classical approaches is the fact that local conductivity processes in a number of disordered materials occur in a dynamic environment. In this paper, we present results from computer simulations of fluctuations in the conductivity of a time-evolving random resistor network. The model calculates the conductance of a three-dimensional rectangular lattice in which about 70% of the total number of nodes is empty, corresponding to a percolation threshold. Materials and Methods: The modeled percolation network consists of 160000 nodes, connected in a three-dimensional rectangular lattice. A potential difference is applied to the opposite edges of the lattice along the long side containing each node, providing charge transfer in the system. The value of bond conductivity in the lattice could take either zero or finite value (two-phase system). The numerical value of the potential for each node and the current at each site are calculated by solving Kirchhoff’s equations. Dynamics was introduced into the system by assuming that a small fraction of the whole nodes are able to diffuse through the lattice, thus changing the conduction paths, but keeping on the other hand the total fraction of the conducting phase unchanged. Results: The process of exchange between neighboring conducting and non-conducting nodes between each other in space has been simulated, after which the conductivity of the network has been recalculated. After repeating this process many times, temporal realizations of the conductivity fluctuations have been obtained, which allows a systematic analysis of the system dynamics. The characteristic lifetime τ reflects the reconfiguration time of the conductive part of the grid. In the limit of high exchange rate υ → 1 it is expected that the power spectral density of the conductivity fluctuations will be white noise. Conclusion: The results are of particular interest for advancing fundamental understanding of charge transfer mechanisms in dispersed semiconductor materials, which are relevant to chemoresistive sensing and catalytic chemistry.

作者简介

Leonid Kochkurov

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0002-3360-8878
SPIN 代码: 9274-4584
77, Politechnicheskaya str., Saratov, 410054, Russia

Dmitry Zimnyakov

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0002-9787-7903
SPIN 代码: 1918-5220
77, Politechnicheskaya str., Saratov, 410054, Russia

参考

  1. Saberi A. A. Recent advances in percolation theory and its applications. Physics Reports, 2015, vol. 578, pp. 1–32. https://doi.org/10.1016/j.physrep.2015.03.003
  2. Li M., Liu R.-R., Lü L., Hu M.-B., Xu S., Li Y. Z. Percolation on complex networks: Theory and application. Physics Reports, 2021, vol. 907, pp. 1–68. https://doi.org/10.1016/j.physrep.2020.12.003
  3. Xu X., Wang J., Lv J.-P., Deng Y. Simultaneous analysis of three-dimensional percolation models. Frontiers of Physics, 2014, vol. 9, pp. 113–119. https://doi.org/10.1007/s11467-013-0403-z
  4. Liu J., Regenauer-Lieb K. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling. Physical Review E, 2011, vol. 83, iss. 1, art. 016106. https://doi.org/10.1103/PhysRevE.83.016106
  5. Hunt A., Ewing R., Ghanbarian B. Percolation theory for flow in porous media. Cham, Springer, 2014, XXIV+447 p. https://doi.org/10.1007/978-3-319-03771-4
  6. Rammal R., Tannous C., Tremblay A. M. S. 1/f noise in random resistor networks: Fractals and percolating systems. Physical Review A, 1985, vol. 31, iss. 4, pp. 2662–2671. https://doi.org/10.1103/PhysRevA.31.2662
  7. Rammal R., Tannous C., Breton P., Tremblay A. -M. S. Flicker (1/ f) noise in percolation networks: A new hierarchy of exponents. Physical Review Letters, 1985, vol. 54, iss. 15, pp. 1718–1721. https://doi.org/10.1103/PhysRevLett.54.1718
  8. Blumenfeld R., Meir Y., Aharony A., Aharony A., Harris A. B. Resistance fluctuations in randomly diluted networks. Physical Review B, 1987, vol. 35, iss. 7, pp. 3524–3535. https://doi.org/10.1103/PhysRevB.35.3524
  9. Garfunkel G. A., Alers G. B., Weissman M. B., Mochel J. M., VanHarlingen D. J. Universal-Conductance-Fluctuation 1/f Noise in a Metal-Insulator Composite. Physical Review Letters, 1988, vol. 60, iss. 26, pp. 2773–2776. https://doi.org/10.1103/PhysRevLett.60.2773
  10. Stephany J. F. Frequency limits of 1/f noise. Journal of Physics: Condensed Matter, 2000, vol. 12, iss. 11, pp. 2469–2483. https://doi.org/10.1088/0953-8984/12/11/313
  11. Nandi U. N., Mukherjee C. D., Bardhan K. K. 1/f noise in nonlinear inhomogeneous systems. Physical Review B, 1996, vol. 54, iss. 18, pp. 12903–12914. https://doi.org/10.1103/PhysRevB.54.12903
  12. Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-insulator transition in interelectrode bridge-like ensembles of anatase nanoparticles under a long-term action of the direct current. Nanomaterials, 2023, vol. 13, iss. 9, art. 1490. https://doi.org/10.3390/nano13091490
  13. Kochkurov L. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Klimova A. A., Zimnyakov D. A. Degradation of conductivity of low-dimensional nanostructured semiconductor layers under long-term dc current flow. Izvestiya of Saratov University. Physics, 2024, vol. 24, iss. 1, pp. 41–51 (in Russian). https://doi.org/10.18500/1817-3020-2024-24-1-41-51, EDN: AUQNBD
  14. Lust L. M., Kakalios J. Computer simulations of conductance noise in a dynamical percolation resistor network. Physical Review E, 1994, vol. 50, iss. 5, pp. 3431–3435. https://doi.org/10.1103/PhysRevE.50.3431
  15. Gallyamov S. R., Melchukov S. A. Percolation model of two-phase lattice conductivity: Theory and computer experiment. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2010, iss. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
  16. Bunde A., Havlin S., eds. Fractals and disordered systems. Berlin, Springer, 2012, XXII+408 р. https://doi.org/10.1007/978-3-642-84868-1
  17. Feder J. Fractals. Physics of Solids and Liquids. New York, Springer, 2013. XXVI+284 p. https://doi.org/10.1007/978-1-4899-2124-6
  18. Herrmann H. J., Hong D. C., Stanley H. E. Backbone and elastic backbone of percolation clusters obtained by the new method of “burning”. Journal of Physics A: Mathematical and General, 1984, vol. 17, iss. 5, pp. L261–L266. https://doi.org/10.1088/0305-4470/17/5/008

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».