Stochastic SIRS+V model of infections spread

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The aim of the paper is to construct a model of the spread of infection in the form of a system of stochastic differential equations that takes into account fluctuations in the parameters characterizing the processes of infection, restoration and loss of immunity. Methods: Numerical simulation of oscillations of a system of stochastic differential equations with Langevin sources. Results: A stochastic SIRS+V model of epidemic spread has been constructed in the form of a system of three differential equations with multiplicative sources of quasi-Gaussian noise. The model does not take into account the effect of the disease on the population size, while the population density is considered as a parameter affecting the course of the epidemic. The model demonstrates the long-term oscillatory dynamics observed in many viral diseases. Conclusion: Studies have shown that to model the course of infectious diseases, it is not enough to know the average values of the rates of infection, recovery and loss of immunity, but it is also necessary to know the intensity of fluctuations of these values. The different levels of such fluctuations lead to qualitatively different observed dynamics of the epidemic. The root-mean-square values of parameter fluctuations can be estimated during the analysis of empirical data obtained from observations of the spread of specific diseases, and then used in modeling. For example, when statistically analyzing a disease in the course of medical practice, it is not difficult to obtain a distribution of recovery times and loss of immunity. These observations will also make it possible to clarify the type of distribution functions for the Langevin sources used, which in practice may differ from Gaussian ones.

About the authors

Alexey Vladimirovich Shabunin

Saratov State University

ORCID iD: 0000-0002-3495-9418
SPIN-code: 2418-5776
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Бейли Н. Математика в биологии и медицине. М. : Мир, 1970. 326 c.
  2. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М. : Наука, 1991. 276 c.
  3. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42. P. 599–653. https://doi.org/10.1137/S0036144500371907
  4. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. М. ; Ижевск : Институт компьютерных исследований, 2003. 368 c.
  5. Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. М. : Мир, 2004. 784 c.
  6. Ross R. An application of the theory of probabilities to the study of a priori pathometry. Part I // Proc. R. Soc. 1916. Vol. A92. P. 204–230. https://doi.org/10.1098/rspa.1916.0007
  7. Ross R. An application of the theory of probabilities to the study of a priori pathometry. Part II // Proc. R. Soc. 1917. Vol. A93. P. 212–225. https://doi.org/10.1098/rspa.1917.0014
  8. Ross R., Hudson H. An application of the theory of probabilities to the study of a priori pathometry. Part III // Proc. R. Soc. 1917. Vol. A93. P. 225–240. https://doi.org/10.1098/rspa.1917.0015
  9. Kermack W., McKendrick A. A contribution to the mathematical theory of epidemics // Proc. R. Soc. 1927. Vol. A115. P. 700–721. https://doi.org/10.1098/rspa.1927.0118
  10. Шабунин А. В. Гибридная SIRS-модель распространения инфекций // Известия вузов. Прикладная нелинейная динамика. 2022. T. 30, № 6. С. 717–731. https://doi.org/10.18500/0869-6632003014
  11. Anderson R. M., May R. M. The population dynamics of microparasites and their invertabrate hosts // Phil. Trans. R. Soc. 1981. Vol. B291. P. 451–524.
  12. Anderson R. M., May R. M. The invasion, persistence and spread of infectious deseases with animal and plant communities // Phil. Trans. R. Soc. 1986. Vol. B314, № 3. P. 533–570.
  13. Павловский И. П., Суслин В. М. Стохастическая модель эволюции популяции в пространстве // Математическое моделирование. 1994. Т. 6. С. 9–24.
  14. Allen L. J. S., Burgin A. M. Comparison of Deterministic and Stochastic SIS and SIR Models in Discrete Time // Mathematical Biosciences. 2000. Vol. 163. P. 1–33. https://doi.org/10.1016/S0025-5564(99)00047-4
  15. Allen L. J. S. A Primer on Stochastic Epidemic Models: Formulation, Numerical Simulation, and Analysis // Infectious Disease Modelling. 2017. Vol. 2. P. 128–142. https://doi.org/10.1016/j.idm.2017.03.001
  16. Gibson G. J., Streftaris G., Thong D. Comparison and Assessment of Epidemic Models // Statistical Science. 2018. Vol. 33. P. 19–33. https://doi.org/10.1214/17-STS615
  17. Boccara N., Cheong K. Automata network SIR models for the spread of infectious diseases in populations of moving individuals // Journal of Physics A: Mathematical and General. 1992. Vol. 25. P. 2447–2461. https://doi.org/10.1088/0305-4470/25/9/018
  18. Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation // Ecological Modelling. 2000. Vol. 133. P. 209–223. https://doi.org/10.1016/S0304-3800(00)00294-5
  19. Шабунин А. В. SIRS-модель распространения инфекций с динамическим регулированием численности популяции: Исследование методом вероятностных клеточных автоматов // Известия вузов. Прикладная нелинейная динамика. 2019. T. 27, № 2. С. 5–20. https://doi.org/10.18500/0869-6632-2019-27-2-5-20
  20. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. Прикладная нелинейная динамика. 2020. T. 28, № 4. С. 383–396. https://doi.org/10.18500/0869-6632-2020-28-4-383-396
  21. Ланжевен П. О теории броуновского движения // Избранные труды. М. : Издательство Академии наук СССР, 1960. C. 338–341.
  22. Maki Y., Hirose H. Infectious Disease Spread Analysis Using Stochastic Differential Equations for SIR Model // 4th International Conference on Intelligent Systems, Modelling and Simulation. IEEE. 2013. P. 152–156. https://doi.org/10.1109/ISMS.2013.13
  23. Rao F. Dynamics Analysis of a Stochastic SIR Epidemic Model // Abstract and Applied Analysis. 2014. Vol. 2014. P. 1–9. https://doi.org/10.1155/2014/356013
  24. Mukhsar Sani A., Abapihi B. Connection of CTMC Process, Deterministic and Stochastic Differential Equations in Modeling of Epidemics // Journal of Physics: Conference Series. 2021. Vol. 1899. Art. 012111. https://doi.org/10.1088/1742-6596/1899/1/012111
  25. Maruyama G. Continuous Markov processes and stochastic equations // Rendiconti del Circolo Matematico di Palermo. 1955. Vol. 4, № 1. P. 48–90.
  26. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical Journal. 1961. Vol. 1. P. 445–466.
  27. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulation nerve axon // Proceedings of the IRE. 1962. Vol. 50. P. 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».