Semi-analytical approximation of the normal derivative of the heat simple layer potential near the boundary of a two-dimensional domain
- Авторлар: Ivanov D.Y.1
-
Мекемелер:
- Russian University of Transport
- Шығарылым: Том 24, № 4 (2024)
- Беттер: 476-487
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1816-9791/article/view/353447
- DOI: https://doi.org/10.18500/1816-9791-2024-24-4-476-487
- EDN: https://elibrary.ru/GMVNDF
- ID: 353447
Дәйексөз келтіру
Толық мәтін
Аннотация
A semi-analytical approximation of the normal derivative of the simple layer heat potential near the boundary of a two-dimensional domain with $C^{5} $ smoothness is proposed. The calculation of the integrals that arise after piecewise quadratic interpolation of the density function with respect to the variable of arc length $s$, is carried out using analytical integration over the variable $\rho =\sqrt{r^{2} -d^{2} } $, where $r$ and $d$ are the distances from the observation point to the integration point and to the boundary of the domain, respectively. To do this, the integrand is represented as the sum of two products, each of which consists of two factors, namely: a function smooth in а near-boundary domain containing the Jacobian of the transition from the integration variable $s$ to the variable $\rho $, and a weight function containing a singularity at $r=0$ and uniformly absolutely integrable in the near-boundary region. Smooth functions are approximated with the help of the piecewise quadratic interpolation over the variable $\rho $, and then analytical integration becomes possible. Analytical integration over $\rho $ is carried out on a section of the boundary fixed in width, containing the projection of the observation point, and on the rest of the boundary, the integrals over $s$ are calculated using the Gauss formulas. Integration over the parameter of $C_{0} $-semigroup formed by time shift operators is also carried out analytically. To do this, the $C_{0} $-semigroup is approximated using the piecewise quadratic interpolation over its parameter. It is proved that the proposed approximations have stable cubic convergence in the Banach space of continuous functions with the uniform norm, and such convergence is uniform in the closed near-boundary region. The results of computational experiments on finding of the normal derivative of solutions of the second initial-boundary problem of heat conduction in a unit circle with a zero initial condition are presented, confirming the uniform cubic convergence of the proposed approximations of the normal derivative of the simple layer heat potential.
Негізгі сөздер
Авторлар туралы
Dmitrii Ivanov
Russian University of Transport
Хат алмасуға жауапты Автор.
Email: ivanovdyu@yandex.ru
ORCID iD: 0000-0003-4551-469X
SPIN-код: 2156-2382
Scopus Author ID: 36523172000
ResearcherId: W-6276-2018
22/2 Chasovaya St., Moscow 125993, Russia
Әдебиет тізімі
- Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. Москва : Мир, 1987. 524 с.
- Смирнов В. И. Курс высшей математики : в 5 т. Т. 4, ч. 2. Москва : Наука, 1981. 550 с.
- Zhang Y.-M., Gu Y., Chen J.-T. Stress analysis for multilayered coating systems using semianalytical BEM with geometric non-linearities // Computational Mechanics. 2011. Vol. 47, iss. 5. P. 493–504. https://doi.org/10.1007/s00466-010-0559-0
- Gu Y., Chen W., Zhang B., Qu W. Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method // Computational Mechanics. 2014. Vol. 53, iss. 6. P. 1223–1234. https://doi.org/10.1007/s00466-013-0965-1
- Niu Z., Cheng Ch., Zhou H., Hu Z. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM // Engineering Analysis with Boundary Elements. 2007. Vol. 31, iss. 12. P. 949–964. https://doi.org/10.1016/j.enganabound.2007.05.001
- Niu Z., Hu Z., Cheng Ch., Zhou H. A novel semi-analytical algorithm of nearly singular integrals on higher order elements in two dimensional BEM // Engineering Analysis with Boundary Elements. 2015. Vol. 61. P. 42–51. https://doi.org/10.1016/j.enganabound.2015.06.007
- Иванов Д. Ю. Уточнение коллокационного метода граничных элементов вблизи границы двумерной области с помощью полуаналитической аппроксимации теплового потенциала двойного слоя // Вестник Томского государственного университета. Математика и механика. 2020. № 65. С. 30–52. https://doi.org/10.17223/19988621/65/3
- Данфорд Н., Шварц Дж. Т. Линейные операторы : в 3 т. Т. 1: Общая теория. Москва : Изд-во иностранной литературы, 1962. 896 с.
- Иванов Д. Ю. Уточнение коллокационного метода граничных элементов вблизи границы области в случае двумерных задач нестационарной теплопроводности с граничными условиями второго и третьего рода // Вестник Томского государственного университета. Математика и механика. 2019. № 57. С. 5–25. https://doi.org/10.17223/19988621/57/1
- Березин И. С., Жидков Н. П. Методы вычислений : в 2 т. Т. 1. Москва : Физматгиз, 1962. 464 с.
Қосымша файлдар


