Алгоритмический поиск целых абелевых корней многочлена с целыми абелевыми коэффициентами

Обложка

Цитировать

Полный текст

Аннотация

В работе рассматриваются операции над целыми абелевыми числами ранга $n$. Такие числа по определению являются элементами поля комплексных чисел и имеют вид многочленов с целыми коэффициентами от заданного первообразного корня из единицы степени $n$, при этом степени таких многочленов ограничены функцией Эйлера $\varphi(n)$. Приведен пример, показывающий, что внутри круга на комплексной плоскости можно найти бесконечно много целых абелевых чисел. Для  описанных операций, в частности, представлен алгоритм вычисления обратного для данного целого абелева числа ранга $n$, что позволяет рассматривать не только кольца таких чисел, но и поля целых абелевых чисел. Естественная арифметика, возникающая для таких алгебраических структур, приводит к вопросу об изучении многочленов с целыми абелевыми коэффициентами. Исследуется задача поиска корней таких многочленов. Предложен алгоритм нахождения целых абелевых корней многочленов над кольцом целых абелевых чисел. Этот алгоритм основан на выдвинутом предложении о том, что все корни заданного многочлена ограничены некоторой областью. Проведены компьютерные вычисления, подтверждающие статистическую верность предложения.

Об авторах

Лилия Михайловна Цыбуля

Московский педагогический государственный университет

ORCID iD: 0000-0001-7062-8782
Scopus Author ID: 26538349800
Россия, 119882, г. Москва, ул. Малая Пироговская, 1

Список литературы

  1. Боревич З. И., Шафаревич И. Р. Теория чисел. Москва : Наука, 1985. 503 с.
  2. Гришин А. В. О периодической части группы невырожденных 2х2-матриц // Международная конференция, посвященная 90-летию кафедры высшей алгебры механико-математического факультета МГУ. Москва, 2019. С. 26.
  3. Гришин А. В., Цыбуля Л. М. О кручении в полной линейной группе и алгоритме диагонализации // Фундаментальная и прикладная математика. 2021. Т. 23, вып. 4. С. 55–71.
  4. Murty M. R., Esmond J. Problems in Algebraic Number Theory. New York : Springer New York, 2004. 369 p. (Graduate Texts in Mathematics, vol. 190). https://doi.org/10.1007/b138452
  5. Гришин А. В., Прокопцев А. А., Цыбуля Л. М. Алгебра и арифметика целых абелевых чисел и компьютерные вычисления // XIII Белорусская математическая конференция : материалы Междунар. науч. конф. (Минск, 22–25 ноября 2021 г.) : в 2 ч. Минск : Беларуская навука, 2021. Ч. 2. С. 38–39.
  6. Greenberg M. J. An elementary proof of the Kronecker –Weber theorem // The American Mathematical Monthly. 1974. Vol. 81, iss. 6. P. 601–607. https://doi.org/10.1080/00029890.1974.11993623
  7. Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре : Для физ.-мат. фак. ун-тов и пед. ин-тов. 10-е изд. Москва : Наука. Физматлит, 1972. 304 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».