A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method

Capa

Citar

Texto integral

Resumo

A new algorithm for the numerical solution of one-dimensional Cauchy problems and Poisson equations is implemented. The algorithm is based on the collocation method and representation of the solution as an expansion in Chebyshev polynomials. It is proposed instead of the usual approach, which consists in combining all known conditions — differential (the equation itself) and initial / boundary — into one system of approximate linear algebraic equations, to go to the method of solving the problem in several separate stages. First, spectral coefficients are identified that determine the “general” solution of the original problem. The collocation method determines the interpolation coefficients of the derivative of the solution, and thus the expansion coefficients of the solution itself (except for the initial ones). At this stage, the choice of a good basis with discrete orthogonality makes it possible to use very efficient algorithms for finding the desired coefficients. The complexity of reducing the matrix of a system of linear algebraic equations to a diagonal form becomes equivalent to the complexity of multiplying the Chebyshev matrix of coefficients by the vector of the right side of the system. Then the expansion coefficients of the solution itself (except for the first one or two) are obtained by multiplying the known tridiagonal integration matrix (inverse to the Chebyshev differentiation matrix) by the vector of interpolation coefficients of the derivative. At the last stage, considering the initial/boundary conditions select a “particular” desired solution, unambiguously redefining the missing coefficients of the desired expansion.

Sobre autores

Leonid Sevastianov

Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

6, Miklukho-Maklaya St., Moscow, 117198, Russia

Konstantin Lovetskiy

Peoples’ Friendship University of Russia (RUDN University)

6, Miklukho-Maklaya St., Moscow, 117198, Russia

Dmitry Kulyabov

Peoples’ Friendship University of Russia (RUDN University)

6, Miklukho-Maklaya St., Moscow, 117198, Russia

Bibliografia

  1. Boyd J. P. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Books on Mathematics, 2013. 668 p.
  2. Mason J. C., Handscomb D. C. Chebyshev Polynomials. Chapman and Hall/CRC Press, 2002. 360 p. https://doi.org/10.1201/9781420036114
  3. Fornberg B. A Practical Guide to Pseudospectral Methods. New York : Cambridge University Press, 1996. 231 p. https://doi.org/10.1017/CBO9780511626357
  4. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd ed. New York : Cambridge University Press, 2007. 1235 p.
  5. Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Berlin ; Heidelberg : Springer, 2011. 472 p. (Springer Series in Computational Mathematics, vol. 41). https://doi.org/10.1007/978-3-540-71041-7
  6. Olver S., Townsend A. A Fast and Well-Conditioned Spectral Method // SIAM Review. 2013. Vol. 55, iss. 3. P. 462–489. https://doi.org/10.1137/120865458
  7. Chandrasekaran S., Gu M. Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations // SIAM Journal on Matrix Analysis and Applications. 2003. Vol. 25, iss. 2. P. 373–384. https://doi.org/10.1137/S0895479899353373
  8. Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials // Numerical Algorithms. 2020. Vol. 83, iss. 1. P. 1–31. https://doi.org/10.1007/s11075-019-00668-z
  9. Zhang X., Boyd J. P. Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: Effects of different bases // Science China Mathematics. 2023. Vol. 66, iss. 1. P. 191–220. https://doi.org/10.1007/s11425-021-1974-x
  10. Boyd J. P., Gally D. H. Numerical experiments on the accuracy of the Chebyshev – Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials // Journal of Computational and Applied Mathematics. 2007. Vol. 205, iss. 1. P. 281–295. https://doi.org/10.1016/j.cam.2006.05.006
  11. Dutykh D. A Brief Introduction to Pseudo-spectral Methods: Application to Diffusion Problems. 2019. 55 p. URL: https://arxiv.org/pdf/1606.05432 (дата обращения: 30.05.2022).
  12. Dawkins P. Differential Equations. 2018. 524 p. URL: https://tutorial.math.lamar.edu/Classes/DE/DE.aspx (дата обращения: 30.05.2022).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».