Function correction and Lagrange – Jacobi type interpolation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

It is well-known that the Lagrange interpolation based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere), like the Fourier series of a summable function. On the other hand, any measurable almost everywhere finite function can be “adjusted” in a set of an arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises whether the class of continuous functions has a similar property with respect to any interpolation process. In the present paper, we prove that there exists the matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Jacoby matrix $\mathfrak{M}^{(\alpha,\beta)}$, $\alpha,\beta>-1$ with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of an arbitrarily small measure such that interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.

Авторлар туралы

Vladimir Novikov

Saratov State University

Russia, 410026, Saratov, Astrahanskaya str., 83

Әдебиет тізімі

  1. Grunwald G. Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Stetiger Funktionen // Annals of Mathematics. 1936. Vol. 37, № 4. P. 908–918. https://doi.org/10.2307/1968627
  2. Marcinkiewicz J. Sur la divergence des polynomes d’interpolation // Acta litterarum ac scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae : Sectio scientiarum mathematicarum. 1937. Vol. 8. P. 131–135.
  3. Erdos P., Vertesi P. On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes // Acta Mathematica Academiae Scientiarum Hungaricae. 1980. Vol. 36, iss. 1–2. P. 71–89. https://doi.org/10.1007/BF01897094
  4. Menchoff D. Sur les series de Fourier des fonctions continues [О рядах Фурье от непрерывных функций] // Математический сборник. 1940. Т. 8 (50), № 3. C. 493–518. URL: https://mi.mathnet.ru/sm6044 (дата обращения: 30.03.2022).
  5. Бари Н. К. Тригонометрические ряды. Москва : Физматгиз, 1961. 936 с.
  6. Натансон Г. И. Двусторонняя оценка функции Лебега интерполяционного процесса Лагранжа с узлами Якоби // Известия вузов. Математика. 1967. № 11. С. 67–74. URL: https://mi.mathnet.ru/ivm3239 (дата обращения: 30.03.2022).
  7. Привалов А. А. Критерий равномерной сходимости интерполяционных процессов Лагранжа // Известия вузов. Математика. 1986. № 5. C. 49–59. URL: https://mi.mathnet.ru/ivm7554 (дата обращения: 30.03.2022).
  8. Неваи Г. П. Замечания об интерполировании // Acta Mathematica Academiae Scientiarum Hungaricae. 1974. Vol. 25, iss. 1–2. P. 123–144. https://doi.org/10.1007/BF01901754
  9. Сегё Г. Ортогональные многочлены. Москва : Физматлит, 1962. 500 с.
  10. Новиков В. В. Исправление функций и интерполяция Лагранжа в узлах, близких к узлам Якоби // Современные проблемы теории функций и их приложения : материалы 20-й междунар. Сарат. зимн. шк. (Саратов, 28 января –1 февраля 2020 г.). Саратов : Научная книга, 2020. С. 277–280. EDN: BJDTHR

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).