Oscillations of finite-dimensional models of an extensible catenary
- Autores: Degilevich E.A.1,2, Smirnov A.S.1,3
-
Afiliações:
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
- Peter the Great St. Petersburg Polytechnic University
- Edição: Volume 25, Nº 3 (2025)
- Páginas: 332-344
- Seção: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/352465
- DOI: https://doi.org/10.18500/1816-9791-2025-25-3-332-344
- EDN: https://elibrary.ru/GTSNSZ
- ID: 352465
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Egor Degilevich
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences;
ORCID ID: 0000-0003-0142-4561
Código SPIN: 2976-3360
61 Bolshoi prospect V.O., St. Petersburg 199178, Russia
Alexey Smirnov
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University
ORCID ID: 0000-0002-6148-0322
Código SPIN: 5464-2279
Scopus Author ID: 57220787764
Researcher ID: ABG-4971-2021
61 Bolshoi prospect V.O., St. Petersburg 199178, Russia
Bibliografia
- Меркин Д. Р. Введение в механику гибкой нити. Москва : Наука, 1980. 240 с.
- Chen G., Yang Y., Yang Y., Li P. Study on Galloping Oscillation of Iced Catenary System under Cross Winds // Shock and Vibration. 2017. Art. 1634292. DOI: https://doi.org/10.1155/2017/1634292
- Liu Z., Song Y., Wang Y., Wang H., Gao S. The catenary vibration response of high-speed electrified railway considering horizontal wind // Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation (EITRT2013)-Volume I. Lecture Notes in Electrical Engineering. Berlin, Heidelberg : Springer, 2014. Vol. 287. P. 45–54. DOI: https://doi.org/10.1007/978-3-642-53778-3_5
- Hatibovic A., Kádár P. An algorithm for the parabolic approximation of the catenary applicable in both inclined and level spans // 2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE). Budapest, Hungary, 2018. P. 217–222. DOI: https://doi.org/10.1109/CANDO-EPE.2018.8601137
- Rawlins C. B. Effect of non-linearity in free large oscillations of a shallow catenary // Journal of Sound and Vibration. 2004. Vol. 273, iss. 4–5. P. 857–874. DOI: https://doi.org/10.1016/S0022-460X(03)00646-1
- Смирнов А. С., Дегилевич Е. А. Колебания цепных систем. Санкт-Петербург : ПОЛИТЕХ-ПРЕСС, 2021. 246 с. EDN: XIOEBN
- Klaycham K., Nguantud P., Athisakul C., Chucheepsakul S. Free vibration analysis of large sag catenary with application to catenary jumper // Ocean Systems Engineering. 2020. Vol. 10, iss. 1. P. 67–86. DOI: https://doi.org/10.12989/ose.2020.10.1.067
- Дегилевич Е. А., Смирнов А. С. Моделирование цепной линии и ее модификаций // Труды семинара «Компьютерные методы вмеханике сплошной среды» 2021–2022 гг. Санкт-Петербург : ПОЛИТЕХ-ПРЕСС, 2022. С. 24–41. EDN: QSUXMG
- Mwape C. J., Hong T. S, Wu W. B. Static Studies of a steel chain ropeway section using Msc Adams//AdvancedMaterials Research. 2011. Vol. 328–330. P. 1031–1036. DOI: https://doi.org/10.4028/www.scientific.net/AMR.328-330.1031
- Suvanjumrat C., Suwannahong W., Thongkom S. Implementation of multi-body dynamics simulation for the conveyor chain drive system // The 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016). 2017. Vol. 95. Art. 06006. DOI: https://doi.org/10.1051/matecconf/20179506006
- Исполов Ю. Г. Вычислительные методы в теории колебаний. Санкт-Петербург : Изд-во Политехнического ун-та, 2008. 124 с. DOI: https://doi.org/10.18720/SPBPU/2/si20-160, EDN: QJUVVH
Arquivos suplementares



