Multiplicities of some graded сocharacters of the matrix superalgebra M(2,2)(F)

Cover Page

Cite item

Full Text

Abstract

Let $F$ be an arbitrary field of characteristic zero, and let $M^{(m,k)}(F)$ be a matrix superalgebra over $F$. It is known from the theory of algebras with polynomial identities that the superalgebra $M^{(m,k)}(F)$ has a finite basis of $Z_2$-graded identities. Therefore, the problem of describing such a basis arises naturally. At the present moment of time, there is no such description. First of all, this is due to the fact that there are no effective methods for finding the usual or $Z_2$-graded identities of a superalgebra $M^{(m,k)}(F)$. Nevertheless, for some values of $m$, $k$, such identities can still be found. For this purpose, one uses either computer computations or the well-developed apparatus of the representation theory of the symmetric group $S_n$ and the general linear group $GL_p$. More precisely, to find $Z_2$-graded identities of a superalgebra $M^{(m,k)}(F)$ for small values of $m,k$, one studies the sequence $\{\chi_n\}$ of characters of representations of either groups $S_r\times S_{n-r}$ or group $GL_p\times GL_p$. For each such group, one constructs a vector $F$-space in the free algebra $F\{Y\bigcup Z\}$. At the same time, with respect to the action of group $S_r\times S_{n-r}$ ($GL_p\times GL_p$) on its vector space, it has the structure of a left $S_r\times S_{n-r}$ ($GL_p\times GL_p$) module. However, it turns out that it is computationally preferable to work with the characters representation sequence of the group $GL_p\times GL_p$. In this paper, we study the sequence of $GL_p\times GL_p$-characters $\{\chi_n\}$  of matrix superalgebra $M^{(2,2)}(F)$. This uses the fact that between pairs of partitions $(\lambda,\mu)$, where $\lambda\vdash r,\, \mu\vdash n-r$ and irreducible $GL_p\times GL_p$-modules, there is a one-to-one correspondence. Moreover, we investigate only those multiplicities in the decomposition of the character $\chi_n$ that are associated with irreducible $GL_p\times GL_p$-modules corresponding to pairs of partitions $(\lambda,\mu)$ of the form $(0,\mu)$. It is shown that if the height $h(\mu)$ of the Young diagram $D_\mu$ for a pair $(0,\mu)$ is no more than five, then the multiplicity $m_{0,\mu}$ of the irreducible $GL_p\times GL_p$-character $\chi_n$ is different from zero.

About the authors

Stepan Yuryevich Antonov

Kazan Innovative University

ORCID iD: 0000-0003-1705-3929
42 Moskovskaya St., Kazan 420111, Russia

Alina Vladimirovna Antonova

Kazan State Power Engineering University

ORCID iD: 0000-0001-7047-7275
SPIN-code: 4476-9689
Russia, 420066, Kazan, Krasnosel'skaya st., 51

References

  1. Di Vincenzo O. M. On the graded identities of M1,1(E) // Israel Journal of Mathematics. 1992. Vol. 80, iss. 3. P. 323–335. DOI: https://doi.org/10.1007/BF02808074
  2. Аверьянов И. В. Базис градуированных тождеств супералгебры M1,2(F) // Математические заметки. 2009. Т. 85, вып. 4. С. 483–501. DOI: https://doi.org/10.4213/mzm4298, EDN: RLRASB
  3. Kemer A. R. Ideals of identities of associative algebras. Providence, RI : American Mathematical Society, 1991. 81 p. (Translations of Mathematical Monographs, vol. 87).
  4. Антонов С. Ю. Наименьшая степень тождеств подпространства M1(m,k)(F) матричной супералгебры M(m,k)(F) // Известия высших учебных заведений. Математика. 2012. № 11. С. 3–19. EDN: PCOHZL
  5. Антонов С. Ю., Антонова А. В. О квазимногочленах Капелли III // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2021. Т. 21, вып. 2. С. 142–150. DOI: https://doi.org/10.18500/1816-9791-2021-21-2-142-150, EDN: HMVRSQ
  6. Amitsur A. S., Levitzki J. Minimal identities for algebras // Proceedings of the American Mathema tical Society. 1950. Vol. 1, iss. 4. P. 449–463. DOI: https://doi.org/10.1090/S0002-9939-1950-0036751-9
  7. Di Vincenzo O. M., Drensky V. The basis of the graded polynomial identities for superalgebras of triangular matrices // Communications in Algebra. 1996. Vol. 24, iss. 2. P. 727–735. DOI: https://doi.org/10.1080/00927879608825595
  8. Centrone L., Silva V. R. T. On Z2-graded identities of UT2(E) and their growth // Linear Algebra and its Applications. 2015. Vol. 471. P. 469–499. DOI: https://doi.org/10.1016/j.laa.2014.12.035
  9. Giambruno A., La Mattina D., Misso P. Polynomial identities on superalgebras: Classifying linear growth // Journal of Pure and Applied Algebra. 2006. Vol. 207, iss. 1. P. 215–240. DOI: https://doi.org/10.1016/j.jpaa.2005.09.006
  10. Valenti A. The graded identities of upper triangular matrices of size two // Journal of Pure and Applied Algebra. 2002. Vol. 172, iss. 2–3. P. 325–335. DOI: https://doi.org/10.1016/S0022-4049(01)00169-4
  11. Di Vincenzo O. M. Z2-gradedpolynomialidentities for superalgebras of block-triangular matrices // Serdica Mathematical Journal. 2004. Vol. 30. P. 111–134.
  12. La Mattina D. On the graded identities and cocharacters of the algebra of 3×3 matrices // Linear Algebra and its Applications. 2004. Vol. 384. P. 55–75. DOI: https://doi.org/10.1016/S0024-3795(04)00034-5, EDN: LAUZWJ
  13. Giambruno A., Zaicev M. Polynomial identities and asymptotic methods. Providence, RI : American Mathematical Society, 2005. 352 p. (AMS Mathematical Surveys and Monographs, vol. 122).
  14. Drensky V., Giambruno A. Cocharacters, codimensions and Hilbert series of the polynomial identities for 2 ×2 matrices with involution // Canadian Journal of Mathematics. 1994. Vol. 46, iss. 4. P. 718–733. DOI: https://doi.org/10.4153/CJM-1994-040-6
  15. Giambruno A. GL×GL-representations and ∗-polynomial identities // Communications in Algebra. 1986. Vol. 14, iss. 5. P. 787–796. DOI: https://doi.org/10.1080/00927878608823335

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).