Numerical analysis of the stress-strain state of osteotomies of the first metatarsal bone

Cover Page

Cite item

Full Text

Abstract

Deviation of the first toe to the outside, interconnected with the deviation of the first metatarsal bone to the inside, occurs in 46% of patients of the older age group and is called valgus deformity of the first toe. The negative impact of this pathology on the quality of life of patients is the reason for seeking medical help, the gold standard of which is surgical correction, and the basic surgical technique is osteotomy (sawing the bone and fixing its fragments with implants) of the first metatarsal. At the same time, an ideal osteotomy should provide initial stability in the early postoperative period. However, a large number of ways to perform osteotomy, as well as the advantages and disadvantages of each of the surgical techniques, do not allow to consider one of them as the most successful. In this regard, the aim of the work was to develop and validate a biomechanical model of osteotomy of the first metatarsal bone to analyze its stability and reliability depending on the type of osteotomy, the degree of displacement of bone fragments, as well as the number of fastening screws. In this study, biomechanical modeling of the most commonly used variants of osteotomy of the first metatarsal bone of the foot in the surgical treatment of its valgus deformity was carried out. For this purpose, 10 models of osteotomies of a separate first metatarsal bone were created, which were then subjected to static loading to analyze their stress-strain state and assess their success. Successful (stable and reliable) treatment options were identified, as well as unsuccessful ones. Two of the ten options considered were unsuccessful – scarf type osteotomies with displacement of bone fragments by 2/3 of its diameter and fixed with a single screw. It was revealed that osteotomies of the chevron type showed higher stability in comparison with scarf osteotomies. As a result, we note that in this study, numerical experiments were conducted for the first time to compare the stability and strength of the most commonly used variants of osteotomies based on a single bone model. A biomechanical model of scarf osteotomy of the first metatarsal bone has been developed and validated on the basis of mechanical experiments.

About the authors

Asel V. Polienko

Saratov State University

ORCID iD: 0000-0003-4471-6599
Russia, 410026, Saratov, Astrahanskaya str., 83

Dmitry V. Ivanov

Saratov State University

ORCID iD: 0000-0003-1640-6091
Russia, 410026, Saratov, Astrahanskaya str., 83

Sergey I. Kireev

Saratov State University

ORCID iD: 0000-0002-3318-5633
Russia, 410026, Saratov, Astrahanskaya str., 83

Leonid Valentinovich Bessonov

Saratov State University

ORCID iD: 0000-0002-5636-1644
Scopus Author ID: 57204800512
ResearcherId: G-4699-2015
Russia, 410026, Saratov, Astrahanskaya str., 83

Alina M. Muldasheva

Saratov State University

Russia, 410026, Saratov, Astrahanskaya str., 83

Elena S. Olenko

Saratov State University

ORCID iD: 0000-0003-1573-0623
Scopus Author ID: 26658534900
ResearcherId: AAD-3276-2022
Russia, 410026, Saratov, Astrahanskaya str., 83

References

  1. Nix S., Smith M., Vicenzino B. Prevalence of hallux valgus in the general population: A systematic review and meta-analysis // Journal of Foot and Ankle Research. 2010. Vol. 27, iss. 3. P. 21. https://doi.org/10.1186/1757-1146-3-21
  2. Ray J. J., Friedmann A. J., Hanselman A. E., Vaida J., Dayton P. D., Hatch D. J., Smith B., Santrock R. D. Hallux Valgus // Foot & Ankle Orthopaedics. 2019. Vol. 4, iss. 2. Art. 2473011419838500. https://doi.org/10.1177/2473011419838500
  3. Sammarco V. J., Acevedo J. Stability and fixation techniques in first metatarsal osteotomies // Foot and Ankle Clinics. 2001. Vol. 6, iss. 3. P. 409–432. https://doi.org/10.1016/S1083-7515(03)00105-0
  4. Unal M., Baran O., Uzun B., Turan A.T. Comparison of screw-fixation stabilities of first metatarsal shaft osteotomies: A biomechanical study // Acta Orthopaedica et Traumatologica Turcica. 2010. Vol. 44, iss. 1. P. 70–75. https://doi.org/10.3944/AOTT.2010.2209
  5. Matzaroglou C., Bougas P., Panagiotopoulos E., Saridis A., Karanikolas M., Kouzoudis D. Ninety-degree chevron osteotomy for correction of hallux valgus deformity: Clinical data and finite element analysis // The Open Orthopaedics Journal. 2010. Vol. 4. P. 152–156. https://doi.org/10.2174/1874325001004010152
  6. Голядкина А. А., Полиенко А. В., Киреев С. И., Курманов А. Г., Киреев В. С. Анализ биомеханических параметров остеотомии первой плюсневой кости // Российский журнал биомеханики. 2019. Т. 23, № 3. С. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
  7. Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // Journal of Orthopaedic Surgery. 2022. Vol. 30, iss. 3. Art. 10225536221143816. https://doi.org/10.1177/10225536221143816
  8. Shih K. S., Hsu C. C., Huang G. T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method // Bioengineering (Basel). 2023. Vol. 10, iss. 4. Art. 499. https://doi.org/10.3390/bioengineering10040499
  9. Xie Q., Li X., Wang P. Three dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // Journal of Orthopaedic Surgery. 2023. Vol. 31, iss. 2. Art. 10225536231175235. https://doi.org/10.1177/10225536231175235
  10. Shin K. S., Hsu C. C., Lin T. W., Huang K. T., Hou Sh. M. Biomechanical evaluation of different hallux valgus treatment with plate fixations using single first metatarsal bone model and musculoskeletal lower extremity model // Journal of Biomechanical Science and Engineering. 2021. Vol. 16, iss. 2. P. 1–12. https://doi.org/10.1299/jbse.21-00073
  11. Guo J., Wang L., Mao R., Chang C., Wen J., Fan Y. Biomechanical evaluation of the first ray in pre-/post-operative hallux valgus: A comparative study // Clinical Biomechanics. 2018. Vol. 60. P. 1–8. https://doi.org/10.1016/j.clinbiomech.2018.06.002
  12. Wong D. W., Wang Y., Chen T. L., Yan F., Peng Y., Tan Q., Ni M., Leung A. K., Zhang M. Finite element analysis of generalized ligament laxity on the deterioration of hallux valgus deformity (bunion) // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. Art. 571192. https://doi.org/10.3389/fbioe.2020.571192
  13. Favre P., Farine M., Snedeker J. G., Maquieira G. J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. Vol. 25, iss. 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
  14. Коробейников С. Н. Нелинейное деформирование твердых тел. Новосибирск : Изд-во СО РАН, 2000. 262 с.
  15. Goldstein S. A. The mechanical properties of trabecular bone: Dependence on anatomic location and function // Journal of Biomechanics. 1987. Vol. 20, iss. 11–12. Р. 1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6
  16. Titanium Alloys in Medical Applications // AZoM. 2023. URL: https://www.azom.com/article.aspx?ArticleID=1794 (дата обращения: 05.04.2023).
  17. Material Data Sheet // SLM solutions. Ti-Alloy Ti6Al4V ELI (Grade 23). URL: https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/MDS_Ti-Alloy_Ti6Al4V__ELI_0719_EN.pdf (дата обращения: 05.04.2023).
  18. Havaldar R., Pilli S. C., Putti B. B. Insights into the effects of tensile and compressive loadings on human femur bone // Advanced Biomedical Research. 2014. Vol. 3. Art. 110. https://doi.org/10.4103/2277-9175.129375
  19. Иванов Д. В. Биомеханическая поддержка решения врача при выборе варианта лечения на основе количественных критериев оценки успешности // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22, вып. 1. С. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
  20. Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot and Ankle Surgery. 2019. Vol. 25, iss. 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».