Об оценках порядка наилучших M–членных приближений функций многих переменных в анизотропном пространстве Лоренца – Зигмунда

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматриваются анизотропное пространство Лоренца – Караматы периодических функций многих переменных и класс  Никольского – Бесова в этом пространстве. Установлены точные по порядку оценки наилучших $M$-членных тригонометрических приближений функций из класса  Никольского – Бесова по норме другого пространства Лоренца – Зигмунда.

Об авторах

Габдолла Акишев

Казахстанский филиал Московского государственного университета им. М.В. Ломоносова

Казахстан, 100008, г. Астана, ул. Кажымукана, д. 11

Список литературы

  1. Bennett C., Sharpley R. Interpolation of Operators. Orlando : Academic Press, 1988. 469 p.
  2. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. Москва : Мир, 1974. 333 c.
  3. Blozinski A. P. Multivariate rearrangements and Banach function spaces with mixed norms // Transactions of the American Mathematical Society. 1981. Vol. 263, № 1. P. 149–167. https://doi.org/10.1090/S0002-9947-1981-0590417-X
  4. Kolyada V. I. On embedding theorems // Nonlinear Analysis, Function spaces and Applic. Praha : Institute of Mathematics of the Academy of Sciences of the Czech Republic, 2007. P. 35–94. URL: http://dml.cz/dmlcz/702492 (дата обращения: 20.02.2022).
  5. Никольский С. М. Приближение функций многих переменных и теоремы вложения. Москва : Наука, 1977. 456 с.
  6. Аманов Т. И. Пространства дифференцируемых функций с доминирующей смешанной производной. Алма-Ата : Наука, 1976. 224 с.
  7. Лизоркин П. И., Никольский С. М. Пространства функций смешанной гладкости с декомпозиционной точки зрения // Труды Математического института имени В. А. Стеклова. 1989. Т. 187. С. 143–161.
  8. Dung D., Temlyakov V. N., Ullrich T. Hyperbolic Cross Approximation. Basel ; Berlin : Springer, 2018. 229 p. (Advanced Courses in Mathematics. CRM Barcelona).
  9. Белинский Э. С. Приближение «плавающей» системой экспонент на классах периодических функций с ограниченной смешанной производной // Исследования по теории функций многих вещественных переменных / отв. ред. Ю. А. Брудный. Ярославль : Ярославский гос. ун-т, 1988. С. 16–33.
  10. Темляков В. Н. Приближение функций с ограниченной смешанной производной // Труды Математического института имени В. А. Стеклова. 1986. Т. 178. С. 3–113.
  11. Темляков В. Н. Конструктивные разреженные тригонометрические приближения и другие задачи для функций смешанной гладкости // Математический сборник. 2015. Т. 206, вып. 11. С. 131–160. https://doi.org/10.4213/sm8466
  12. Temlyakov V. N. Constructive sparse trigonometric approximation for functions with small mixed smoothness // Constructive Approximation. 2017. Vol. 45, iss. 3. P. 467–495. https://doi.org/10.1007/s00365-016-9345-3
  13. Романюк А. С. Наилучшие M-членные тригонометрические приближения классов Бесова периодических функций многих переменных // Известия РАН. Серия математическая. 2003. Т. 67, № 2. С. 61–100. https://doi.org/10.4213/im427
  14. Bazarkhanov D. B., Temlyakov V. N. Nonlinear tensor product approximation of functions // Journal of Complexity. 2015. Vol. 31, iss. 6. P. 867–884. https://doi.org/10.1016/j.jco.2015.06.005
  15. Базарханов Д. Б. Нелинейные тригонометрические приближения классов функций многих переменных // Труды Математического института имени В. А. Стеклова. 2016. Т. 293. С. 8–42. https://doi.org/10.1134/S0371968516020023, EDN: WEMXBH
  16. Акишев Г. А. О точности оценок наилучшего M-членного приближения класса Бесова // Сибирские электронные математические известия. 2010. Т. 7. С. 255–274.
  17. Акишев Г. О порядках M-членного приближения классов в пространстве Лоренца // Математический журнал. Алматы. 2011. Т. 11, № 1. С. 5–29.
  18. Akishev G. On exact estimates of the order of approximation of functions of several variables in the anisotropic Lorentz – Zygmund space. arXiv: 2106.07188v2 [mathCA] 14 Jun 2021. 20 p.
  19. Akishev G. Estimates of the order of approximation of functions of several variables in the generalized Lorentz space. arXiv: 2105.14810v1 [mathCA] 31 May 2021. 18 p.
  20. Акишев Г. Об оценках порядка наилучших M-членных приближений функций многих переменных в анизотропном пространстве Лоренца – Караматы // Современные проблемы теории функций и их приложения : материалы 21-й междунар. Саратовской зимней школы (Саратов, 31 января – 4 февраля 2022 г.). Саратов : Саратовский университет [Издание], 2022. Вып. 21. С. 13–16. EDN: XCSQXT

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).