Assessment of the ability of Bacillus velezensis bacteria to produce cyclic lipopeptides and characteristics of their growth-stimulating and bioremediation properties
- Авторлар: Basalaeva D.L.1, Rodenko K.A.1, Nikelshparg M.I.2, Yevstigneyeva S.S.3, Golubev D.M.1, Glinskaya E.V.1
-
Мекемелер:
- Saratov State University
- МАОУ «Гимназия № 3»
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
- Шығарылым: Том 25, № 2 (2025)
- Беттер: 184-194
- Бөлім: Biology
- URL: https://journals.rcsi.science/1816-9775/article/view/357785
- DOI: https://doi.org/10.18500/1816-9775-2025-25-2-184-194
- EDN: https://elibrary.ru/NBNQIP
- ID: 357785
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Daria Basalaeva
Saratov State University83, Astrakhanskaya str., Saratov, 410012, Russia
Ksenia Rodenko
Saratov State University
ORCID iD: 0009-0007-7428-6506
83, Astrakhanskaya str., Saratov, 410012, Russia
Matvey Nikelshparg
МАОУ «Гимназия № 3»Саратов
Stella Yevstigneyeva
Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)410049, Russia, Saratov, Entuziastov Avenue, 13
Dmitry Golubev
Saratov State University
ORCID iD: 0000-0001-9471-6066
83, Astrakhanskaya str., Saratov, 410012, Russia
Elena Glinskaya
Saratov State University83, Astrakhanskaya str., Saratov, 410012, Russia
Әдебиет тізімі
- Breuer U. Book review: Brock mikrobiologie. By M. T. Madigan, J. M. Martinko, J. Parker (founded by T. D. Brock) // Acta Biotechnologica. 2001. № 4 (21). P. 369–370. https://doi.org/10.1002/1521-3846(200111)21:43.3CO;2-Z
- Schneider T., Müller A., Miess H., Gross H. Cyclic lipopeptides as antibacterial agents – potent antibiotic activity mediated by intriguing mode of actions // International Journal of Medical Microbiology. 2014. № 304, part 1. P. 37–43. https://doi.org/10.1016/j.ijmm.2013.08.009
- Ruis-Garsia C., Be'jar V. Bacillus velezensis sp. Nov., a surfactant-produsing bacterium isolated from the river Velez in Malaga, Southern Spain // International Journal of Systematic and Evolutionary Microbiology. 2005. № 55. part 1. P. 191–195. https://doi.org/10.1099/ijs.0.63310-0
- Pat. US-2018020676-A1 USA. 2014. Bacillus velezensis rti301 compositions and methods of use for benefiting plant growth and treating plant disease / S. Taghavi, D. van der Lelie, J. Lee, A. Devine. Priority December 29, 2014.
- Лазарев С. А., Михайлова Н. А. Ферментативные свойства пробиотических штаммов бактерий рода Bacillus // Актуальная биотехнология. 2019. № 3 (30). С. 404–406.
- Иркитова А. Н., Каган Я. Р., Соколова Г. Г. Сравнительный анализ методов определения антагонистической активности молочнокислых бактерий // Известия Алтайского государственного универститета. 2012. № 3, часть 1 (75). С. 41–44.
- Chen L., Chong X. Y., Zhang Y. Y., Lv Y. Y., Hu Y. S. Genome shuffling of Bacillus velezensis for enhanced surfactin production and variation analysis // Curr. Microbiol. 2020. № 77, part 1. P. 71–78. https://doi.org/10.1007/s00284-019-01807-4
- Басалаева Д. Л., Никельшпарг М. И., Евстигнеева С. С., Глинская Е. В. Антагонистическая активность бактерий Bacillus velezensis // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 1. С. 57–63. https://doi.org/10.18500/1816-9775-2022-22-1-57-63
- Мелентьев А. И., Курченко В. П., Кузьмина Л. Ю. Циклические липопептиды – перспективный биотехнологический продукт // Перспективы и проблемы развития биотехнологии в рамках единого экономического пространства стран Содружества : материалы междунар. науч-практ. конф. (Минск-Нарочь, 25–28 мая 2005 г.). Минск : РИВШ, 2005. С. 140–141.
- Смирнова Ю. В., Гамоненко О. В. Влияние Bacillus subtilis на рост горчицы сарепской // Проблемы и перспективы изучения естественных и антропогенных источников экосистем Урала и прилегающих районов : материалы IX Всерос. науч-практ. конф. (Стерлитамак, 25 мая 2019 г.). Стерлитамак : Издательство Башкирского государственного университета, 2019. С. 121–124.
- Яковлева О. В. Аэробные спорообразующие бактерии рода Bacillus Cohn – продуценты поверхностно-активных веществ : дис. … канд. биол. наук. Уфа, 2004. 117 с.
- Hathout Y., Ho Y. P., Ryzhov V., Demirev P., Fenselau C. Kurstakins: A new class of Lipopeptides isolated from Bacillus thuringiensis // Journal of Natural Products. 2000. № 63. P. 1492–1496. https://doi.org/10.1021/np000169q
- Li X., Zhang Y., Wei Z., Guan Z., Cai Y., Liao X. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis // PloS ONE. 2016. № 11. P. 1–22. https://doi.org/10.1371/journal.pone.0162125
- Zhi Y., Wu Q., Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45 // Scientific Reports. 2017. № 7. P. 1–13. https://doi.org/10.1038/srep40976
- de Faria A. F., Stéfani D., Vaz B. G., Silva Í. S., Garcia J. S., Eberlin M. N., Grossman M. J., Alves O. L., Durrant L. R. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol // Journal of Industrial Microbiology and Biotechnology. 2011. № 38. P. 863–871. https://doi.org/10.1007/s10295-011-0980-1
- Dimkić I.,Stanković S., Nišavić M., Petković M., Ristivojević P., Fira D., Berić T. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains // Frontiers in Microbiology. 2017. № 8. P. 925–936. https://doi.org/10.3389/fmicb.2017.00925
- Lu K., Jin Q., Lin Y., Lu W., Li S., Zhou C., Jin J., Jiang Q., Ling L., Xiao M. Cell-free fermentation broth of Bacillus velezensis strain S3-1 improves Pak Choi nutritional quality and changes the bacterial community structure of the rhizosphere soil // Frontiers in Microbiology. 2020. № 11. P. 2043–2056. https://doi.org/10.3389/fmicb.2020.02043
- Wang C., Zhao D., Qi G., Mao Z., Hu X., Du B., Liu K., Ding Y. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides // Frontiers in Microbiology. 2020. № 10. P. 2889–2904. https://doi.org/10.3389/fmicb.2019.02889
- Hashem A., Tabassum B., Allah E. F. A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress // Saudi Journal of Biological Sciences. 2019. Vol. 26. P. 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
- Kumar A., Singh S., Mukherjee A.,Rastogi R. P., Verma J. P. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress // Microbiol. Res. 2021. Vol. 242. Art. 126616. https://doi.org/10.1016/j.micres.2020
- Kazerooni E. A., Maharachchikumbura S. S. N., Adhikari A., Al-Sadi A. M., Kang S. M., Kim L. R., Lee I. J. Rhizospheric Bacillus amyloliquefaciens protect Capsicum annuum cv. Geumsugangsan from multiple abiotic stress via multifarious plant growth-promoting attributes // Frontiers in Plant Science. 2021. Vol. 12. P. 669–693. https://doi.org/10.3389/fpls.2021.669693
- Syed Nabi R. B., Shahzad R., Tayade R., Shahid M., Hussain A., Ali M. W., Yun B. W. Evaluation potential of PGPR to protect tomato against Fusarium wilt and promote plant growth // Peer. J. 2021. Vol. 16. P. 1–20. https://doi.org/10.7717/peerj.11194
- Awan S. A., Ilyas N., Khan I., Raza M. A., Rehman A. U., Rizwan M., Rastogi A., Tariq R., Brestic M. Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties // Plants (Basel). 2020. Vol. 9. P. 878–891. https://doi.org/10.3390/plants9070878
- Roy T., Bandopadhyay A., Paul C., Majumdar S., Das N. Role of plasmid in pesticide degradation and metal tolerance in two plant growth–promoting rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558) // Current Microbiology. 2022. Vol. 79, № 4. P. 106–112. https://doi.org/10.1007/s00284-022-02793-w
- Podbielska M., Kus-Liśkiewicz M., Jagusztyn B., Piechowicz B., Sadło S., Słowik-Borowiec M., Twarużek M., Szpyrka E. Influence of Bacillus subtilis and Trichoderma harzianum on penthiopyrad degradation under laboratory and field studies // Molecules. 2020. Vol. 25, № 6. P. 1421–1436. https://doi.org/10.3390/molecules25061421
- Zhao J., Chi Y., Xu Y., Jia D., Yao K. Co-metabolic degradation of β-cypermetrim and 3-phenoxybenzoic acid by co–culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4 // PLoS ONE. 2016. Vol. 11, № 11. P. 1–14. https://doi.org/10.1371/journal.pone.0166796
- Chen S., Deng Y., Chang C., Lee J., Cheng Y., Cui Z., Zhou J., He F., Hu M., Zhang L. H. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19 // Scientific Reports. 2015. Vol. 5. P. 84–87. https://doi.org/10.1038/srep08784
- Jakinala P., Lingampally N., Kyama A., Hameeda B. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide // Ecotoxicologe and Enviromental Safety. 2019. Vol. 182. P. 372–378. https://doi.org/10.1016/j.ecoenv.2019.109372
Қосымша файлдар

