Fluorimetric determination of glycine using copper ion complexes with ciprofl oxacin

Cover Page

Cite item

Full Text

Abstract

A luminescent method for determining glycine based on competitive complexation of Cu2+ ions with ciprofl oxacin and an amino acid is proposed. Formation of a Cu2+ complex with a fl uoroquinolone derivative is shown using spectrophotometry. The resulting complex does not have fl uorescent properties, unlike the ligand itself. In the presence of additives of complexing agent ions in a ciprofl oxacin solution, its fl uorescence is quenched. Introduction of glycine (Gl) into the Cu2+–CF system is accompanied by an increase in the fl uorescence signal of free ciprofl oxacin (CF) (λexc = 330 nm, λfl = 450 nm) with an intensity proportional to the concentration of the amino acid. The eff ect of the nature of surfactant micelles on the emission effi ciency of the analytical system is studied. It is shown that, regardless of their nature, surfactant micelles additionally quench the fl uorescence of Cu2+ ion complexes with CF and Gl. Optimal conditions for complexation reactions in the studied systems, as well as for an increase in the intensity of CF intrinsic fl uorescence, are established. It is assumed that the formation of the analytical signal is associated with the fl uorescence of CF, the concentration of which increases in the solution due to the destruction of the unstable Cu2+ complex with CF and the formation of a more stable Cu2+ chelate with glycine. It is shown that the quenching eff ect is maximal at pH 7 in a phosphate buff er solution. Similar eff ects are not observed in an acetate-ammonia buff er solution. A linear dependence of the fl uorescence intensity on the glycine concentration is observed in the range of 5×10-7 – 5×10-4 M. The detection limit is 2×10-7 M.

About the authors

Ekaterina R. Timonova,

Saratov State University

ORCID iD: 0009-0009-4068-2070
83, Astrakhanskaya str., Saratov, 410012, Russia

Alina V. Syardina

Saratov State University

ORCID iD: 0009-0003-7060-4969
83, Astrakhanskaya str., Saratov, 410012, Russia

Taisiya A. Krainova

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Anastasia M. Marinina

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Natalia Vladimirovna Nevryueva

Saratov State Medical University

112, Bolshaya Kazachya Str., Saratov, 410010, Russia

Tatiana D. Smirnova

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

References

  1. Михайлова С. В., Захарова Е. Ю., Петрухин А. С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению. 2-е изд., перераб. и доп. М. : Литтерра, 2019. 368 с.
  2. Razak M. A., Begum R. S., Viswanath B., Rajagopal S. Multifarious beneficial effect of nonessential amino acid, glycine: A review // Oxidative Medicine and Cellular Longevity. 2017. Vol. 17, № 1. Р. 15–32. https://doi.org/10.1155/2017/1716701
  3. Jewell J. P., Norris M. J., Sublett R. L. Colorimetric quantitative method for determining glycine in presence of other amino acids // Anal. Chem. 1965. Vol. 37, № 8. Р. 1034–1035.
  4. Perez-Torres I., Zuniga A., Guarner V. Beneficial effects of the amino acid glycine // MiniRev. Med. Chem. 2017. Vol. 17, № 1. P. 15–32. https://doi.org/10.2174/ 1389557516666160609081602
  5. Pérez-Ràfols С., Liu Y., Wang Q., Crespo G. А. Why not glycine electrochemical biosensors? // Sensors (Basel). 2020. Vol. 20, iss. 14. Art. 4049. https://doi.org/10.3390/s20144049
  6. Шведова И. Д. Профилактика и методы борьбы с фальсификацией лекарственных средств и биологически активных добавок на территории Российской Федерации // Право и государство: теория и практика. 2023. № 6 (222). С. 394–397. https://doi.org/10.47643/1815-1337/ 2023/6/394
  7. Jewell J. P., Norris M. J., Sublett R. L. Colorimetric quantitative method for determining glycine in presence of other amino acids // Anal. Chem. 1965. Vol. 37, № 8. P. 1034–1035. https://doi.org/ 10.1021/ac60227a023
  8. Shan S. A., Rathod I. S., Kanakia D. Colorimetry method for estimation of glycine, alanine and isoleucine // Indian J. Pharm. Sci. 2007. Vol. 69, № 3. P. 462–464. https://doi.org/10.1021/ac60227a023
  9. Suzuki Sh., Hachimori Y., Yaceda U. Spectrophotometric determination of glycine with 2,4,6-trichloro-s-triazine // Anal. Chem. 1970. Vol. 42, № 1. P. 101–103. https://doi.org/10.1016/j.ab.2015.12.015
  10. Ahmed Y. Z., Abd El-Kader A. K. Spectrophotometric determination of hydroxylamine, glycine and methionine // Anal. Letters. 1984. Vol. 17, № 19. P. 2251–2258. https://doi.org/10.1080/00032718408065372
  11. Porina K. P., Vasyuk S. O. Quantitative determination of glycine in pharmaceutical formulations // Farmatsevt. Zhurnal. 2015. № 3. P. 78–83.
  12. Prasad R., Surendra P. Spectrophotometric determination of iron(III)-glycine complex // J. Chem. Educ. 2009. Vol. 86, № 4. P. 494–497. https://doi.org/10.1021/ed086p494
  13. Tomashevskiy I. A., Golovanova O. A. Spectrofotimetric determination of the overall Stability constants of calcium (II) complexes with glycine, L-methionine and L-tryptophan using multiple linear regression // Journal of Applied Spectroscopy. 2021. Vol. 88, № 1. P. 5–10. https://doi.org/10.1007/s10812-021-01132-4
  14. Lea K.-M., Njeqomir R. Spectrophotometric determination of NAC and MPG in pharmaceuticals // Int. J. Anal. Chem. 2011. № 1. P. 1–6. https://doi.org/10.1155/2011/140756
  15. Musarraf M. H., Asiri A. M., Mohammed M. R. Simultaneous detection of aspartic acid and glycine using Fe3O4@ZnO NPs // RSC Adv. 2020. Vol. 10. P. 129376–129389. https://doi.org/10.1039/d0ra03263h
  16. Cулейманова Э. И. Физико-химические методы определения глицина и его производных // Вестник Башкирского пед. университета. 2023. № 3 (71). С. 142–148.
  17. Патент РФ RU 2700831 C1, 23.09.2019. Способ количественного определения глицина в биологических лекарственных препаратах методом гидрофильной высокоэффективной жидкостной хроматографии / О. Б. Рунова, М. Г. Коротков, О. Б. Устинникова. Заявка: 2019101963 от 2019.01.24.
  18. Turel I., Bukovec N., Farkas E. Complex formation between some metals and a quinolone family member (ciprofloxacin) // Polyhedron. 1996. № 15. Р. 269–275. https://doi.org/10.1016/s0162-0134(96)00218-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).