Evaluation of Selection of Finite Element Model for Beam Analysis Based on Shear Stress Distribution


Citar

Texto integral

Resumo

When analyzing building structures in software packages based on the finite element method, incorrect results can be obtained. To justify the correctness of the obtained solution, it is necessary to perform verification studies and engineering assessment of the obtained data. This is required by the national standard of Russian Federation on modeling. The correctness of constructing calculation models can be assessed by comparing the data of the finite element method with the reference value. A numerical experiment was carried out in the SCAD++ version 21 software package for five finite element models of a cantilever beam made of B15 grade concrete, with dimensions of 2.5×0.5×0.5 m: four solid models No. 1-4 and one “reference” model consisting of a dense grid of second-order volumetric finite elements of cubic shape. Based on the calculation results, a comparative analysis of the shear stress distribution pattern from shear force was performed for all models with stresses calculated using the well-known analytical method, according to the Zhuravskii formula. It was found that the shear stress distribution in the sections of four computer models No. 1-4 does not correspond to the theoretical values calculated according to the rules of strength of materials. An accurate solution can be obtained using the “reference” solid model proposed by the authors, consisting of a dense grid of volumetric finite elements of the second order of cubic shape.

Sobre autores

Mikhail Mozgolov

Moscow Polytechnic University

Email: mvmozgolov@yandex.ru
ORCID ID: 0000-0001-7414-0469
Código SPIN: 3386-1518

Candidate of Technical Sciences, Associate Professor of the Department of Construction Operations

Kolomna, Russia

Galina Okolnikova

RUDN University; Moscow State University of Civil Engineering (National Research University)

Autor responsável pela correspondência
Email: okolnikova_ge@mail.ru
ORCID ID: 0000-0002-8143-4614
Código SPIN: 8731-8713

Candidate of Technical Sciences, Associate Professor of the Department of Construction Technologies and Structural Materials, Engineering Academy, RUDN University; Associate Professor of the Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering

Moscow, Russia

Bibliografia

  1. Sekulovich M. Finite Element Method. Translation from Serbian by Yu.N. Zuev. Edited by V.Sh. Barbakadze. Moscow: Stroyizdat Publ.; 1993. (In Russ.) ISBN 5-274-01755-X
  2. Kaplun A.B., Morozov E.M., Olferyeva M.A. ANSYS in the Hands of an Engineer. Practical Guide. Moscow: URSS, 2003. (In Russ.) ISBN 5-354-00238-9
  3. Gorodetsky A.S., Barabash M.S., Sidorov V.N. Computer Modeling in Structural Mechanics Problems. Moscow: ASV, 2016. (In Russ.) ISBN 978-5-4323-0188-8
  4. Perelmuter A.V., Slivker V.I. Calculation Models of Structures and the Possibility of Their Analysis. Moscow: DMK Press, 2007. (In Russ.) ISBN 5041950571, 9785041950576
  5. Perelmuter A.V. Conversations about structural mechanics. Moscow: SCAD Soft Publ., ASV Publ.; 2016. (In Russ.) ISBN 978-5-4323-0153-6
  6. Karpilovsky V.S., Kriksunov E.Z., Maliarenko A.A., Fialko S.Yu., Perelmuter A.V., Perelmuter M.A. SCAD Office. Version 21. Computing complex SCAD ++. Moscow: SKAD SOFT Publ.; 2020. (In Russ.) ISBN 978-5-903683-28-4, ISBN 978-5-4323-0081-2
  7. Cai B., Li B., Fu F. Finite Element Analysis and Calculation Method of Residual Flexural Capacity of Post-fire RC Beams. International Journal of Concrete Structures and Materials. 2020;14:58. https://doi.org/10.1186/s40069-020-00428-7
  8. Saribiyik A., Sümer Y., Aldbahir W.M. Finite Element Modeling of RC Beams Produced with Low-Strength Concrete and Strengthened for Bending and Shear with CFRP and GFRP. Sakarya University Journal of Science. 2024;28(6):13261341. https://doi.org/10.16984/saufenbilder.1469172
  9. Aktas M., Sumer Y. Nonlinear finite element analysis of damaged and strengthened reinforced concrete beams. Journal of Civil Engineering and Management. 2014;20(2):201–210. https://doi.org/10.3846/13923730.2013.801889
  10. Sümer Y., Aktaş M. Finite element modeling of existing cracks on pre-loaded reinforced concrete beams. Arabian Journal for Science and Engineering. 2014;39(4):2611–2619. https://doi.org/10.1007/s13369-013-0925-2
  11. Demir A., Caglar N., Ozturk H., Sumer Y. Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement. Engineering Structures. 2016;120:158– 165. https://doi.org/10.1016/j.engstruct.2016.04.029
  12. Tahnat Y.B.A., Dwaikat M.M., Samaaneh M.A. Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint. Composite Structures. 2018;201:721–739. https://doi.org/10.1016/j.compstruct.2018.06.082
  13. Cao V.V., Ronagh H.R.A model for damage analysis of concrete. Advances in concrete construction. 2013;1(2): 187–200. https://doi.org/10.12989/acc.2013.01.2.187
  14. Varghese S.M., Kamath K., Salim S.R. Effect of concrete strength and tensile steel reinforcement on RC beams externally bonded with fiber reinforced polymer composites: A finite element study. Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.03.650
  15. Sattaratphaijit N., Sirimontree S., Witchayangkoon B. Prediction of the Shear Behavior of Reinforced Concrete Deep Beam Strengthened by Transverse External Post-tension using Finite Element Method. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 2022;13(2):13A2P. https://doi.org/10.14456/ITJEMAST. 2022.37
  16. Mozgolov M.V., Kozlova E.V. On the issue of creating a verification model for calculating a caisson reinforced concrete floor in the SCAD computing complex. Bulletin of the Scientific Research Center Construction. 2022;32(1):128-140 (In Russ.) https://doi.org/10.37538/2224-9494-2022-1(32)-128-140
  17. Mozgolov M.V., Kozlova E.V. Verification of the rod and solid models of the SCAD computing complex for calculating a reinforced concrete caisson floor. Bulletin of the BSTU named after V.G. Shukhov. 2023;(6):35–47. (In Russ.) https://doi.org/10.34031/2071-7318-2023-8-6-35-47
  18. Eremeev P.G. Modern structures of roofs over stadium stands. Moscow: ASV Publ.; 2015. (In Russ.)
  19. Zenin S.A., Bolgov A.N., Sokurov A.Z., Kudinov O.V. Punching strength of flat floor slabs in areas of support on wall ends. Concrete and reinforced concrete. 2022;610(2):35–40. (In Russ.) https://doi.org//10.31659/0005-9889-2022- 610-2-35-40
  20. Mozgolov M.V., Okolnikova G.E. On the issue of assessing the accuracy of solutions of finite element method models using the example of calculating a cantilever beam. System Technologies. 2024;1(50):118–128. (In Russ.) https://doi.org/ 10.48612/dnitii/2024_50_181-128
  21. Mozgolov M.V. On the errors of the example of calculating a reinforced concrete caisson floor panel in the designer’s handbook. Urban development and architecture. 2023;13(3):13–22. (In Russ.) https://doi.org/10.17673/Vestnik. 2023.03.02
  22. Mozgolov M.V., Kozlova E.V. Model of the SCAD complex from volumetric finite elements: calculation of reinforced concrete caisson floors. Bulletin of the Scientific Research Center Construction. 2023;37(2):18–36. (In Russ.) https://doi.org/10.37538/2224-9494-2023-2(37)-18-36

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».