Comparative analysis of the stress state of an equal slope shell by analytical and numerical methods

Capa

Citar

Texto integral

Resumo

Works on the study of the stress-strain state of the shell of an equal slope with an ellipse at the base have not been widely performed. The present paper is a part of a series of articles on the analysis of the geometry and stress state of torses of an equal slope with a directrix ellipse by various methods under different loads and support conditions. The derivation of the differential equations of equilibrium of the momentless theory of shells for determining internal forces in the torse with a directrix ellipse under the action of internal pressure is presented. The analytical results are compared with results obtained by the finite element method (FEM) and the variational difference method (VDM). The advantages and disadvantages of three calculation methods are determined, and it is established that VDM results are more accurate compared to FEM, but FEM-based software is a more powerful tool to perform the structural analysis.

Sobre autores

Olga Aleshina

Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: xiaofeng@yandex.ru
ORCID ID: 0000-0001-8832-6790

PhD, Assistant, Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vyacheslav Ivanov

Peoples’ Friendship University of Russia (RUDN University)

Email: i.v.ivn@mail.ru
ORCID ID: 0000-0003-4023-156X

Doctor of Technical Sciences, Professor-Tutor, Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

David Cajamarca-Zuniga

Catholic University of Cuenca

Email: cajamarca.zuniga@gmail.com
ORCID ID: 0000-0001-8796-4635

Docent of the Department of Civil Engineering

Ave Las Americas & Humboldt, Cuenca, 010101, Republic of Ecuador

Bibliografia

  1. Ivanov V.N., Alyoshina O.О. Comparative analysis of the stress-strain state’s parameters of equal slope shell with the director ellipse using three calculation methods. Structural Mechanics and Analysis of Constructions. 2020;(3):37-46. (In Russ.) https://doi.org/10.37538/0039-2383.2020.3.37.46
  2. Aleshina O.O., Ivanov V.N., Cajamarca-Zuniga D. Stress state analysis of an equal slope shell under uniformly distributed tangential load by different methods. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):51-62. https://doi.org/10.22363/1815-5235-2021-17-1-51-62
  3. Aleshina O.O., Ivanov V.N., Grinko E.A. Investigation of the equal slope shell stress state by analytical and two numerical methods. Structural Mechanics and Analysis of Constructions. 2020;(6):2-13. (In Russ.) https://doi.org/10.37538/0039-2383.2020.6.2.13
  4. Ivanov V.N., Alyoshina O.O. Comparative analysis of the results of determining the parameters of the stress-strain state of equal slope shell. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):374-383. (In Russ.) https://doi.org/10.22363/1815-5235-2019-15-5-374-383
  5. Aleshina O.O. New investigation of the stress-strain state of the torso-shaped awning. International Conference Scientific Research of the SCO Countries: Synergy and Integration. Beijin: Infinity; 2020. p. 130-136. https://doi.org/10.34660/INF.2020.26.58262
  6. Aleshina O.O. Studies of geometry and calculation of torso shells of an equal slope. Structural Mechanics and Analysis of Constructions. 2019;(3):63-70. (In Russ.)
  7. Alyoshina O.О. Definition of the law of setting closed curves torso shells of the equal slope. Engineering Systems - 2020: Proceedings of the Scientific and Practical Conference with International Participation (Moscow, 14-16 October 2020) (vol. 1). Moscow; 2020. p. 22-30. (In Russ.)
  8. Zhou F.-X. A constant slope surface and its application. 2022 3rd International Conference on Geology, Mapping and Remote Sensing. IEEE; 2022. p. 78-81. https://doi.org/10.1109/ICGMRS55602.2022.9849334
  9. Krivoshapko S.N., Timoshin М.А. Static analysis of a torse shell of equal slope with a director ellipse. Structural Mechanics of Engineering Constructions and Buildings. 2008;(1):3-10. (In Russ.)
  10. Hu Jian-guo, Chen Yue-ping. Mathematical model of the identical slope surface. Wuhan University Journal of Natural Sciences. 2002;7:54-58. https://doi.org/10.1007/BF02830014
  11. Krivoshapko S.N. Geometry of ruled surfaces with cuspidal edge and linear theory of analysis of torse shells. Moscow; 2009. (In Russ.)
  12. Klochkov Y.V., Vakhinina O.V., Kiseleva T.A. Calculation of thin shells on the basis of the triangular final element with the correcting Lagrange’s coefficients. Structural Mechanics of Engineering Constructions and Buildings. 2015;(5):55-59. (In Russ.)
  13. Klochkov Y.V., Nikolaev A.P., Ishchanov T.R., Andreev A.S., Klochkov M.Y. Accounting for geometric nonlinearity in finite element strength calculations of thin-walled shell-type structures. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(1):31-37. (In Russ.) https://doi.org/10.22363/1815-5235-2020-16-1-31-37
  14. Ivanov V.N. Fundamentals of the finite element method and the variational-difference method. Moscow: RUDN University; 2008. (In Russ.)
  15. Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells. International Applied Mechanics. 2012;48(6):613-687. https://doi.org/10.1007/s10778-012-0544-8
  16. Govind P.L. Complicated features and their solution in analysis of thin shell and plate structures. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):509-515. https://doi.org/10.22363/1815-5235-2018-14-6-509-515
  17. Ivanov V.N., Rynkovskaya M.I. Analysis of thin walled wavy shell of Monge type surface with parabola and sinusoid curves by variational-difference method. MATEC Web of Conferences, Shanghai, 21-23 October 2016. 2017;95:12007. https://doi.org/10.1051/matecconf/20179512007
  18. Barve V.D., Dey S.S. Isoparametric finite difference energy method for plate bending problems. Computers and Structures. 1983;17(3):459-465. https://doi.org/10.1016/0045-7949(83)90137-2
  19. Bushnell D., Almroth B.O., Brogan F. Finite-difference energy method for nonlinear shell analysis. Computers and Structures. 1971;1(3):361-387. https://doi.org/10.1016/0045-7949(71)90020-4
  20. Ihlenburg F.F. Plate bending analysis with variational finite difference methods on general grid. Computers and Structures. 1993;48(1):141-151. https://doi.org/10.1016/0045-7949(93)90465-P
  21. Ivanov V.N., Krivoshapko S.N. Analytical methods for calculating shells of non-canonical form. Moscow; 2010. (In Russ.)
  22. Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society. 1943;49(1):1-23.
  23. Mikhlin S.G. Variational-difference approximation. Journal of Soviet Mathematics. 1978;10(5):661-787. https://doi.org/10.1007/BF01083968
  24. Zhong H., Yu T. A weak form quadrature element method for plane elasticity problems. Applied Mathematical Modelling. 2009;33(10):3801-3814. https://doi.org/1016/j.apm.2008.12.007
  25. Griffin D.S., Varga R.S. Numerical solution of plane elasticity problems. Journal of the Society for Industrial and Applied Mathematics. 1963;11(4):1046-1062.
  26. Brush D.O., Almroth B.O. Buckling of bars, plates, and shells. New York: McGraw-Hill; 1975.
  27. Ivanov V.N., Lamichane G.P. Compound space constructions. Engineering Systems - 2020: Proceedings of the Scientific and Practical Conference with International Participation (Moscow, 14-16 October 2020) (vol. 1). Moscow; 2020. p. 31-39. (In Russ.)
  28. Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces. Springer; 2015.
  29. Krivoshapko S.N. Perspectives and Advantages of tangential developable surfaces in modeling machine-building and building designs. Bulletin of Civil Engineers. 2019;16(1)20-30. (In Russ.) https://doi.org/10.23968/1999-5571-2019-16-1-20-30
  30. Krivoshapko S.N. The application, geometrical and strength researches of torse shells: the review of works published after 2008. Structural Mechanics and Analysis of Constructions. 2018;(2):19-25. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».